Cho biểu thức P=x+3/√x.Tìm x để P.√x+x-1=2√3x+2√(x-2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A B C H I K D M N E
a/
Xét tg vuông ABO và tg vuông ACO có
OB=OC=R; OA chung => tg ABO = tg ACO (2 tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
Xét tg ABC có
AB=AC (2 tiếp tuyến cùng xp từ 1 điểm...) => tg ABC cân tại A
tg ABO = tg ACO (cmt) \(\Rightarrow\widehat{OAB}=\widehat{OAC}\)
\(\Rightarrow OA\perp BC\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
Xét tg vuông ABO có
\(OB^2=R^2=OH.OA\) (Hệ thức lượng trong tg vuông)
OA=2R (gt); OI=R => AI=R => AI=OI=R => BI=OA/2=R
c/m tương tự khi xét tg vuông ACO ta cũng có CI=R
Xét tứ giác BOCI có
BI=CI=OB=OC=R => BOCI là hình thoi => OH=HI (trong hình thoi 2 đường chéo cắt nhau tại trung điểm mỗi đường)
\(\Rightarrow OH.OA=HI.OA=OB^2=R^2\)
b/
Xét tg vuông AOB có
\(\sin OAB=\dfrac{OB}{OA}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{OAB}=30^o\)
Ta có \(\widehat{OAC}=\widehat{OAB}\left(cmt\right)\Rightarrow\widehat{OAC}=\widehat{OAB}=30^o\)
\(\Rightarrow\widehat{BAC}=\widehat{OAB}+\widehat{OAC}=30^o+30^o=60^o\)
Xét tg cân ABC có
\(\widehat{ABC}=\widehat{ACB}=\alpha\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}=180^o-60^o=120^o\)
\(\Rightarrow2\alpha=120^o\Rightarrow\alpha=60^o\)
=> ABC là tg đều
Ta có
OH=HI (cmt)
AI=R(cmt); OK=R
\(\Rightarrow AI+HI=OK+OH\Rightarrow AH=KH\)
Xét tg cân ABC có
\(OA\perp BC\left(cmt\right)\)
=> BH=CH (Trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung tuyến)
=> ABKC là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
Mà \(OA\perp BC\Rightarrow AK\perp BC\)
=> ABKC là hình thoi (hbh có 2 đường chéo vuông góc)
c/
Ta có AI=BI=CI=R (cmt) => I là tâm đường tròn ngoại tiếp tg ABC
d/
Xét (O) có
\(\widehat{CBD}=90^o\) (Góc nt chắn nửa đường tròn) \(\Rightarrow BD\perp BC\)
\(OA\perp BC\left(cmt\right)\)
=> BD//AO (cùng vuông góc với BC)
e/
Xét tg OMN có
OM=ON=R
ME=NE (gt)
\(\Rightarrow OE\perp MN\) (Trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)
=> B; C; E cùng nhìn AO dưới các góc = nhau và \(=90^o\)
=> B; C; E nằm trên dường tròn đường kính AO => O; E; A; B; C cùng thuộc một đường tròn
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có \(cosBOA=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔOBI có OB=OI và \(\widehat{BOI}=60^0\)
nên ΔOBI đều
ΔOBI đều
mà BH là đường cao
nên H là trung điểm của OI
=>OH=HI
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
=>\(HI\cdot OA=R^2\)
b: Xét ΔAOB vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AO là phân giác của góc BAC
=>\(\widehat{BAC}=2\cdot\widehat{BAO}=2\cdot30^0=60^0\)
Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)
nên ΔBAC đều
Ta có: HO+OK=HK
HI+IA=HA
mà HO=HI và OK=IA(=R)
nên HK=HA
=>H là trung điểm của KA
Xét tứ giác ABKC có
H là trung điểm chung của AK và BC
=>ABKC là hình bình hành
Hình bình hành ABKC có AB=AC
nên ABKC là hình thoi
c: Ta có: \(\widehat{ABI}+\widehat{OBI}=\widehat{ABO}=90^0\)
\(\widehat{HBI}+\widehat{OIB}=90^0\)(ΔBHI vuông tại H)
mà \(\widehat{OBI}=\widehat{OIB}\left(=60^0\right)\)
nên \(\widehat{ABI}=\widehat{HBI}\)
=>BI là phân giác của góc ABH
d: Xét (O) có
ΔBCD nội tiếp
CD là đường kính
Do đó: ΔBCD vuông tại B
=>BC\(\perp\)BD
mà BC\(\perp\)OA
nên BD//OA
e: ΔOMN cân tại O
mà OE là đường trung tuyến
nên OE\(\perp\)MN tại E
Ta có: \(\widehat{OEA}=\widehat{OBA}=\widehat{OCA}=90^0\)
=>O,E,A,B,C cùng thuộc đường tròn đường kính OA
Xét ΔCFE vuông tại F và ΔCAB vuông tại A có
\(\widehat{FCE}\) chung
Do đó: ΔCFE~ΔCAB
=>\(\dfrac{CF}{CA}=\dfrac{CE}{CB}\)
=>\(CF\cdot CB=CE\cdot CA=\dfrac{1}{2}\cdot CA\cdot CA\)
=>\(2\cdot CF\cdot CB=CA^2\)
Xét \(\Delta ABO':\)
\(AB\ge O'A-O'B\left(1\right)\)
Xét \(\Delta OAO':\)
\(O'A\ge O'O-OA\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow AB\ge O'O-OA-O'B=950-500-300=150\left(m\right)\)
Dấu '=' xảy ra khi \(4\) điểm \(O;A;B;O'\) thẳng hàng
\(\Rightarrow\) Xây cầu có chiều dài là \(150\left(m\right)\) trên đoạn nối 2 tâm cầu 2 hòn đảo (O'O) thì cây cầu sẽ ngắn nhất.
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại H và H là trung điểm của AB
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
Xét tứ giác OHBI có \(\widehat{OHB}=\widehat{OIB}=\widehat{HBI}=90^0\)
nên OHBI là hình chữ nhật
b: ΔOBD cân tại O
mà OI là đường cao
nên OI là phân giác của góc BOD
Xét ΔODK và ΔOBK có
OD=OB
\(\widehat{DOK}=\widehat{BOK}\)
OK chung
Do đó: ΔODK=ΔOBK
=>\(\widehat{ODK}=\widehat{OBK}\)
=>\(\widehat{ODK}=90^0\)
=>KD là tiếp tuyến của (O)
c: Xét ΔOBM vuông tại B có BH là đường cao
nên \(OH\cdot OM=OB^2\)
=>\(OH=\dfrac{R^2}{2R}=\dfrac{R}{2}\)
ΔOHB vuông tại H
=>\(OH^2+BH^2=OB^2\)
=>\(BH=\sqrt{R^2-\left(\dfrac{R}{2}\right)^2}=\dfrac{R\sqrt{3}}{2}\)
mà BH=OI
nên \(OI=\dfrac{R\sqrt{3}}{2}\)
ΔOBD cân tại O
mà OI là đường cao
nên I là trung điểm của BD
Ta có: OH=BI
mà BI=ID(I là trung điểm của BD)
nên OH=DI
=>DI=R/2
Xét ΔODK vuông tại D có DI là đường cao
nên \(\dfrac{1}{DI^2}=\dfrac{1}{DO^2}+\dfrac{1}{DK^2}\)
=>\(\dfrac{1}{DK^2}=\dfrac{1}{\left(\dfrac{R}{2}\right)^2}-\dfrac{1}{R^2}=\dfrac{1}{\dfrac{R^2}{4}}-\dfrac{1}{R^2}=\dfrac{3}{R^2}\)
=>\(DK=\dfrac{R\sqrt{3}}{3}\)
ΔADK vuông tại D
=>\(DA^2+DK^2=AK^2\)
=>\(AK=\sqrt{\left(\dfrac{R\sqrt{3}}{3}\right)^2+\left(2R\right)^2}=\dfrac{R\sqrt{39}}{3}\)
Chu vi tam giác ADK là:
AD+DK+AK
\(=2R+\dfrac{R\sqrt{3}}{3}+\dfrac{R\sqrt{39}}{3}=R\left(2+\dfrac{\sqrt{3}+\sqrt{39}}{3}\right)\)
Gọi giá niêm yết của một cái bàn là là x(nghìn đồng)
(Điều kiện: x>0)
Giá niêm yết của một cái quạt điện là 850-x(nghìn đồng)
Giá tiền thực tế của cái bàn là là: \(x\left(1-10\%\right)=0,9x\left(nghìnđồng\right)\)
Giá tiền thực tế của cái quạt điện là:
\(\left(850-x\right)\left(1-20\%\right)=0,8\left(850-x\right)=680-0,8x\left(nghìnđồng\right)\)
Tổng số tiền phải trả là:
850-125=725(nghìn đồng)
=>0,9x+680-0,8x=725
=>0,1x=725-680=45
=>x=450(nhận)
Vậy: Số tiền thực tế anh Bình phải trả cho cái bàn là là: \(450\cdot0,9=405\) nghìn đồng
Số tiền thực tế anh Bình phải trả cho cái quạt điện là:
\(680-0,8\cdot450=320\left(nghìnđồng\right)\)
1: \(A=\sqrt{28}+\sqrt{63}-5\sqrt{8-2\sqrt{7}}\)
\(=2\sqrt{7}+3\sqrt{7}-5\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=5\sqrt{7}-5\left(\sqrt{7}-1\right)=5\)
2: a: Thay x=25 vào A, ta được:
\(A=\dfrac{5}{5+2}=\dfrac{5}{7}\)
b: \(B=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\)
\(=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{x+\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
c: \(P=A:B=\dfrac{\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
\(\sqrt{P}< \dfrac{1}{2}\)
=>\(\left\{{}\begin{matrix}P>=0\\P< \dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}+2}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{1}{4}< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}-2>=0\\\dfrac{4\left(\sqrt{x}-2\right)-\sqrt{x}-2}{4\left(\sqrt{x}+2\right)}< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}>=2\\4\sqrt{x}-8-\sqrt{x}-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=4\\3\sqrt{x}< 10\end{matrix}\right.\)
=>\(4< =x< \dfrac{100}{9}\)
Kết hợp ĐKXĐ, ta được: \(4< x< \dfrac{100}{9}\)
mà x là số nguyên nhỏ nhất thỏa mãn
nên x=5
321 x 2 - 1000
= 642 - 1000
= - 358
Tình yêu vốn dĩ là điều kỳ diệu và tuyệt vời của tạo hóa tuy nhiên là yêu ai, yêu khi nào, yêu ra sao lại là cả một quá trình để trưởng thành. Có lẽ lớp 9 đang là giai đoạn bước ngoặt quan trọng trong cuộc đời của mỗi con người, vì vậy có thể chưa nhất thiết phải yêu đương trong giai đoạn này. Vì vấn đề cấp bách của hiện tại chính là con đường tương lai chông gai phía trước. Nếu ta không thể đủ nội lực và tiềm lực trong tương lai để tự lập thì lúc đó mọi thứ tình yêu đều là xa xỉ, vì thật khó mà có thể tiếp cận với một người mà tương lai của bản thân đã đang quá nhạt mờ.
ĐKXĐ: x>0
Ta có: \(P\cdot\sqrt{x}+x-1=2\sqrt{3x}+2\sqrt{x-2}\)
=>\(\dfrac{x+3}{\sqrt{x}}\cdot\sqrt{x}+x-1=2\sqrt{3x}+2\sqrt{x-2}\)
=>\(x+3+x-1=2\sqrt{3x}+2\sqrt{x-2}\)
=>\(2x+2=2\sqrt{3x}+2\sqrt{x-2}\)
=>\(x+1=\sqrt{3x}+\sqrt{x-2}\)
=>\(\sqrt{3x}-3+\sqrt{x-2}-1=x+1-3-1\)
=>\(\dfrac{3x-9}{\sqrt{3x}+3}+\dfrac{x-2-1}{\sqrt{x-2}+1}-\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(\dfrac{3}{\sqrt{3x}+3}+\dfrac{1}{\sqrt{x-2}+1}-1\right)=0\)
=>x-3=0
=>x=3(nhận)