Tính đạo hàm của hàm số f(c)=\(\dfrac{5}{x+1}+2\sqrt{\dfrac{5c}{c+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(sin^2x+cos^2x=1\)
=>\(cos^2x=1-\left(\dfrac{2}{3}\right)^2=1-\dfrac{4}{9}=\dfrac{5}{9}\)
mà \(cosx>0\)(Vì \(x\in\left(0;\dfrac{\Omega}{2}\right)\))
nên \(cosx=\sqrt{\dfrac{5}{9}}=\dfrac{\sqrt{5}}{3}\)

Xét ΔABC có \(\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
=>\(\dfrac{AB}{sin40}=\dfrac{8}{sin50}\)
=>\(AB=8\cdot\dfrac{sin40}{sin50}\simeq6,71\left(cm\right)\)
Xét ΔABC có \(\widehat{B}+\widehat{C}=50^0+40^0=90^0\)
nên ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\simeq\dfrac{1}{2}\cdot8\cdot6,71=26,84\left(cm^2\right)\)
Xét ΔABC có \(\dfrac{AB}{sinC}=2R\)
=>\(2R=\dfrac{6.71}{sin40}\simeq10,44\)
=>\(R\simeq5,22\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{8^2+6,71^2}\simeq10,44\left(cm\right)\)
\(p=\dfrac{AB+AC+BC}{2}=\dfrac{6,71+8+10,44}{2}\simeq12,6\left(cm\right)\)
\(r=\dfrac{S}{p}=\dfrac{26.84}{12,6}\simeq2,13\left(cm\right)\)

Đề ko đúng rồi em, dữ kiện cuối là góc thì phải có 3 điểm chứ

`->` Chưa đúng.
`-` Xét:
`+` Hai cặp cạnh đối song song.
`+` Hai cặp cạnh đối bằng nhau.
`+` Hai cặp góc đối bằng nhau.
`+` Hai đường chéo cắt nhau tại trung điểm của mỗi đường.
`+` Một cặp cạnh đối vừa song song vừa bằng nhau.

\(sina=\dfrac{2}{3}\left(0< a< 90^o\right)\)
\(sin^2a+cos^2b=1\Rightarrow cos^2a=1-sin^2a=1-\dfrac{4}{9}=\dfrac{5}{9}\)
\(\Rightarrow cosa=\dfrac{\sqrt{5}}{3}\left(0< a< 90^o\Rightarrow cosa>0\right)\)
\(tana=\dfrac{sina}{cosa}=\dfrac{\dfrac{2}{3}}{\dfrac{\sqrt{5}}{3}}=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)
\(P=tana-3cosa=\dfrac{2\sqrt{5}}{5}-3.\dfrac{\sqrt{5}}{3}=\dfrac{2\sqrt{5}}{5}-\sqrt{5}=\dfrac{-3\sqrt{5}}{5}\)