Hàm số y = x²-2x-3 có đồ thị như hình bên. Sử dụng đồ thị này, tìm m để phương trình x²-2x+m=0
a) Vô nghiệm.
b) Có nghiệm kép
c) Có 2 nghiệm phân biệt
d) Có 2 nghiệm phân biệt thuộc [-1;3]
e) Có 2 nghiệm phân biệt không thuộc [-1;3]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4d.
Để ý rằng tập \(3k+1\), nếu k lẻ hay \(k=2n+1\Rightarrow3k+1=3\left(2n+1\right)+1=6n+4\) chính là tập B
Nếu k chẵn hay \(k=2n\Rightarrow3k+1=6n+1\)
Từ đó ta có \(B\subset A\) nên:
\(A\cap B=B\)
\(A\cup B=A\)
\(A\backslash B=C\) với \(C=\left\{6n+1|n\in Z\right\}\)
\(B\backslash A=\varnothing\)
a.
\(\Leftrightarrow\sqrt{2x^2+5x+3}=-x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x-3\ge0\\2x^2+5x+3=\left(-x-3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le-3\\2x^2+5x+3=x^2+6x+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le-3\\x^2-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le-3\\\left[{}\begin{matrix}x=3\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt vô nghiệm
b.
\(\Leftrightarrow\sqrt{2x^2+x+3}=1-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\2x^2+x+3=\left(1-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\2x^2+x+3=1-2x+x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^2+3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left[{}\begin{matrix}x=-1\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt vô nghiệm
a.
\(B\subset A\Rightarrow\left\{{}\begin{matrix}m< -1\\2m-1>5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m>3\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
b.
\(A\subset B\Rightarrow\left\{{}\begin{matrix}m>-1\\2m-1< 5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\m< 3\end{matrix}\right.\)
\(\Rightarrow-1< m< 3\)
c.
\(A\cap B=\varnothing\Rightarrow\left[{}\begin{matrix}m\ge5\\2m-1\le-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\ge5\\m\le0\end{matrix}\right.\)
d.
\(A\backslash B=\varnothing\Rightarrow A\subset B\Rightarrow-1< m< 3\)
e.
\(B\ne\varnothing\) nên ko tồn tại m để \(A\cap B=\varnothing\)
Vectơ vận tốc trung bình có phương và chiều trùng với vectơ độ dời
Độ lớn của vận tốc trung bình được tính như sau:
$|\overrightarrow{v_{tb}}|=\dfrac{|\overrightarrow{\Delta r}|}{\Delta t}=\dfrac{12}{1}=12$ (m/s)
(Do tam giác tạo bởi các vectơ $\overrightarrow{r_1},\,\overrightarrow{r_2},\,\overrightarrow{\Delta r}$ đều)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}ab\cdot sinC=\dfrac{1}{2}\cdot7\cdot23\cdot sin130^o=61,7\) (đvdt)
1: A(1;2); C(4;-2)
\(\overrightarrow{AC}=\left(3;-4\right)\)
Phương trình tham số đường thẳng AC là:
\(\left\{{}\begin{matrix}x=1+3t\\y=2-4t\end{matrix}\right.\)
2: \(\overrightarrow{BC}=\left(7;-1\right)\)
=>Vecto pháp tuyến là (1;7)
Phương trình tổng quát của đường thẳng BC là:
1(x+3)+7(y+1)=0
=>x+3+7y+7=0
=>x+7y+10=0
3: M là trung điểm của AB
=>\(\left\{{}\begin{matrix}x_M=\dfrac{1-3}{2}=-1\\y_M=\dfrac{2-1}{2}=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: M(-1;0,5); C(4;-2)
\(\overrightarrow{MC}=\left(5;-2,5\right)=\left(2;-1\right)\)
Phương trình tham số đường thẳng MC là:
\(\left\{{}\begin{matrix}x=4+2t\\y=-2+\left(-1\right)\cdot t=-2-t\end{matrix}\right.\)
\(x^2-2x+m=0\Leftrightarrow x^2-2x-3=-m-3\)
Từ đồ thị ta thấy:
a.
Phương trình vô nghiệm khi \(-m-3< -4\Rightarrow m>1\)
b.
Phương trình có nghiệm kép khi \(-m-3=-4\Rightarrow m=1\)
c.
Phương trình có 2 nghiệm pb khi:
\(-m-3>-4\Rightarrow m< 1\)
d.
Phương trình có 2 nghiệm pb thuộc \(\left[-1;3\right]\) khi: \(-4< m\le0\)
e.
Có 2 nghiệm pb ko thuộc \(\left[-1;3\right]\) khi \(m>0\)