Cho tam giác ABC vuông tại A , Đcao AH. Vẽ HK Vuông góc với AB (K thuộc AB).CMR
a) AB.AK=BH.HC
b)\(\dfrac{AB^2}{AC^2}=\dfrac{HB}{HC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(x\ge\dfrac{1}{4}\)
Đặt \(\sqrt{4x-1}=p\left(p\ge0\right)\), khi đó pt đã cho trở thành:
\(3x^3+x^2=3p^3+p^2\)
\(\Leftrightarrow\left(3x^3-3p^3\right)+\left(x^2-p^2\right)=0\)
\(\Leftrightarrow\left(x-p\right)\left(3x^2+3xp+3p^2\right)+\left(x-p\right)\left(x+p\right)=0\)
\(\Leftrightarrow\left(x-p\right)\left(3x^2+3xp+3p^2+x+p\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=p\\3x^2+3xp+3p^2+x+p=0\end{matrix}\right.\)
Xét TH \(x=p\) \(\Leftrightarrow x=\sqrt{4x-1}\) \(\Rightarrow x^2=4x-1\) \(\Leftrightarrow x^2-4x+1=0\) (*)
Đến đây ta thấy \(\Delta'=\left(-2\right)^2-1.1=3>0\) nên pt (*) luôn có 2 nghiệm phân biệt \(x_1,x_2\):
\(x_1=\dfrac{-\left(-2\right)+\sqrt{3}}{1}=2+\sqrt{3}\) (nhận)
\(x_2=\dfrac{-\left(-2\right)-\sqrt{3}}{1}=2-\sqrt{3}\) (nhận)
Khi đó, theo hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=1\end{matrix}\right.\)
Mà tổng bình phương các nghiệm của pt đã cho chính bằng \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2.1=14\)
Ta xét tiếp trường hợp \(3x^2+3xp+3p^2+x+p=0\)
(Theo mình thì trường hợp này chắc vô nghiệm)
Vậy tổng bình phương các nghiệm của pt đã cho bằng 14.
- Để căn thức có nghĩa thì:
\(\dfrac{-2}{x+1}\ge0\Leftrightarrow\dfrac{2}{x+1}\le0\Rightarrow x+1< 0\Leftrightarrow x< -1\)
Ở phân thức thứ 2 không phải \(\sqrt{x-2}\) đâu mà là \(\sqrt{x}-2\)
Từ điều kiện \(x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=2\end{matrix}\right.\). Nhưng ta thấy rõ \(\sqrt{x}=2\) là điều không thể do điều kiện xác định của K. Ta chỉ nhận giá trị \(\sqrt{x}=1\Leftrightarrow x=1\)
Mặt khác \(K=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(K=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(K=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(K=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(K=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(K=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Mà \(\sqrt{x}=1\) nên \(K=\dfrac{1+1}{1-3}=-1\)
Vậy tại \(x-3\sqrt{x}+2=0\) thì \(K=-1\)
đk x>=0 ; x khác 4 ; 9
\(K=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
1, \(=\dfrac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}-1}+\dfrac{\sqrt{6}\left(\sqrt{6}+1\right)}{\sqrt{6}}=\sqrt{6}+\sqrt{6}+1=2\sqrt{6}+1\)
2, \(=\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}+\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}=\sqrt{3}+1-\sqrt{3}=1\)
ĐKXĐ : \(x\ge-4\)
(2x + 1)2 = (x + 4)\(\sqrt{4x^2+1}\)
<=> \(4x^2+1+4x=x\sqrt{4x^2+1}+4\sqrt{4x^2+1}\)
<=> \(\left(\sqrt{4x^2+1}-4\right)\left(\sqrt{4x^2+1}-x\right)=0\)
<=> \(\left[{}\begin{matrix}\sqrt{4x^2+1}=4\\\sqrt{4x^2+1}=x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x^2=15\\\left\{{}\begin{matrix}3x^2+1=0\\x\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\sqrt{15}}{2}\left(tm\right)\\∄x\end{matrix}\right.\Leftrightarrow x=\pm\dfrac{\sqrt{15}}{2}\)
a) Áp dụng hệ thức giữa cạnh và đường cao vào tam giác ABC vuông tại A , đường cao AH , ta có :
\(BH.HC=AH^2\left(1\right)\)
Áp dụng hệ thức giữa cạnh và đường cao vào tam giác AHB vuông tại H , đường cao HK , ta có :
\(AH^2=AB.AK\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow AB.AK=BH.HC\) ( ĐPCM )
b) Áp dụng hệ thức giữa cạnh và đường cao vào tam giác ABC vuông tại A , đường cao AH , ta có :
\(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)
\(\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{HB}{HC}\) ( đpcm )