K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

Áp dụng bất đẳng thức Cauchy 

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\)

\(M\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+xz\right)}+\frac{7}{xy+yz+zx}\)

Áp dụng BĐT Cauchy - Schwarz :

\(\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}\ge\frac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)

và \(\frac{7}{xy+yz+xz}\ge\frac{7}{\frac{1}{3}\left(x+y+z\right)^2}=21\)

\(\Rightarrow M\ge9+21=30\)

Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)

7 tháng 5 2020

Áp dụng BĐT Cauchy schwarz ta có:

\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

\(\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}\)

\(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{7}{2\left(xy+yz+zx\right)}\)

\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{\frac{2\left(x+y+z\right)^2}{3}}=30\)

Đẳng thức xảy ra tại x=y=z=1/3

4 tháng 12 2019

b. Hoành độ giao điểm  của (P) và đường thẳng d là nghiệm của phương trình:

\(x^2-4x+3=-mx+2019\)

<=> \(x^2+\left(m-4\right)x-2016=0\)(1)

Để (P) căt d tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có 2 nghiệm phân biệt

<=> \(\Delta>0\)

<=> \(\left(m-4\right)^2+4.2016>0\)luôn đúng với mọi m

Vậy với mọi m \(\in R\) đường thẳng d cắt parapol  ( P ) tạu hai điểm phân biệt.

4 tháng 12 2019

ĐK \(3\ge x\ge1\)

Đặt \(\sqrt{x-1}=a\)

      \(\sqrt{3-x}=b\)

Ta có:

   \(a+b-ab=1\)

  \(a+b-ab-1=0\)

  \(\left(a-ab\right)-\left(1-b\right)=0\)

  \(a\left(1-b\right)-\left(1-b\right)=0\)

  \(\left(a-1\right)\left(1-b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-1=0\Leftrightarrow a=1\\1-b=0\Leftrightarrow b=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=1\Leftrightarrow x-1=1\\\sqrt{3-x}=1\Leftrightarrow3-x=1\end{cases}}\)

\(\Leftrightarrow x=2\)( thỏa mãn ĐK )

3 tháng 12 2019

Chụp hình hộ mình