Cho 2 số a,b thỏa mãn đẳng thức:
\(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)
Tính giá trị của biểu thức \(M=2018\left(a+b\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là 62 bạn nhé !
Chúc bạn học tốt !
a, xét tam giác IHE và tam giác BHA có :
góc IHE = góc BHA = 90
IH = HB do I đx B qua H (gt)
AH = HE do A đx E qua H (gT)
=> tam giác IHE = tam giác BHA (2cgv)
=> IE = AB (đn)
góc EIH = góc HBA (đn) mà 2 góc này slt => IE // AB (đl)
=> IEBA là hình bnhf hành (dh/9
AB _|_ AC (gt)
IE // AB (cmt)
=> IE _|_ AC (đl)
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
b: Xét ΔAED có AH/AE=AM/AD
nên HM//ED
=>ED//CB
Xet ΔCAE có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCAE can tại C
=>CA=CE=BD
Vì BC//ED và BD=CE
nên BCDE là hình thang cân
c: Xét tứ giác AHCK có
N là trung điểm chung của AC và HK
góc AHC=90 độ
=>AHCK là hình chữ nhật