PTĐT thành nhân tử:
a) 9y2 - 4x2 + 6x + 9y
b) x3 + 4x2 - 12x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(9x^2+6x-1=0\)
\(\Leftrightarrow\left(3x+1\right)^2=2\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=\sqrt{2}\\3x+1=-\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{2}-1}{3}\\\frac{-\sqrt{2}-1}{3}\end{cases}}\)
b) \(4x^3+4x^2+x=0\)
\(\Leftrightarrow x\left(4x^2+4x+1\right)=0\)
\(\Leftrightarrow x\left(2x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{2}\end{cases}}\)
Ta có: A = 2x2 - 5x + 3 = 2(x2 - 5/2x + 25/16) - 1/8 = 2(x - 5/4)2 - 1/8 \(\le\)-1/8 \(\forall\)x
Dấu "=" xảy ra <=> x - 5/4 = 0 <=> x = 5/4
Vậy MinA = -1/8 <=> x = 5/4
\(A=2x^2-5x+3=2\left(x^2-\frac{5}{2}x+\frac{3}{2}\right)\)
\(=2\left(x^2-\frac{5}{2}x+\frac{25}{16}-\frac{1}{16}\right)\)
\(=2\left[\left(x-\frac{5}{4}\right)^2-\frac{1}{16}\right]\)
\(=2\left[\left(x-\frac{5}{4}\right)^2\right]-\frac{1}{8}\ge\frac{-1}{8}\)
Bài 9:
Đặt f(x) = \(2x^3+ax+b\)
Vì f(x) = \(2x^3+ax+b\) chia cho x + 1 dư 6 và chia cho x - 2 dư 21 nên ta có:
\(\hept{\begin{cases}f\left(-1\right)=2\times\left(-1\right)^3-a+b=6\\f\left(2\right)=2\times2^3+2a+b=21\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-2-a+b=6\\16+2a+b=21\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-a+b=8\\2a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3a=3\\b=5-2a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=7\end{cases}}\)
Vậy a = -1, b = 7
a) \(9y^2-4x^2+6x+9y\)
\(=\left(3y-2x\right)\left(3y+2x\right)+3\left(3y+2x\right)\)
\(=\left(3y+2x\right)\left(3y-2x+3\right)\)
b) \(x^3+4x^2-12x\)
\(=x\left(x^2+4x-12\right)\)
\(=x\left(x^2-2x+6x-12\right)\)
\(=x\left(x\left(x-2\right)+6\left(x-2\right)\right)\)
\(=x\left(x-2\right)\left(x+6\right)\)
a)\(9y^2-4x^2+6x+9y=\left(9y^2-4x^2\right)+\left(6x+9y\right)=\left[\left(3y\right)^2-\left(2x\right)^2\right]+3\left(2x+3y\right)\)
\(=\left(3y-2x\right)\left(3y+2x\right)+3\left(3y+2x\right)=\left(3y+2x\right)\left[\left(3y-2x\right)+3\right]=\left(3y+2x\right)\left(3y-2x+3\right)\)
b)\(x^3+4x^2-12x=x^3-2x^2+6x^2-12x=\left(x^3-2x^2\right)+\left(6x^2-12x\right)\)
\(=x^2\left(x-2\right)+6x\left(x-2\right)=\left(x-2\right)\left(x^2+6x\right)=x\left(x-2\right)\left(x+6\right)\)