Cho nửa đường tròn tâm O đường kính AB. Điểm C nằm trên O;A. (I) tiếp xúc với nửa đường tròn (O)và tiếp xúc với các đoạn thẳng CA, CD. Gọi E là tiếp điểm của AC với (I). Chứng minh: BD=BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề là tìm min phải không bạn.Nếu thế thì:
\(\frac{x^2-4x+1}{x^2}=\frac{x^2-4x+4-3}{x^2}=\frac{\left(x-2\right)^2-3}{x^2}\ge-\frac{3}{x^2}\) (do \(\left(x-2\right)^2\ge0\))
Dấu "=" xảy ra khi \(x-2=0\Leftrightarrow x=2\)
Ta có: \(-\frac{3}{x^2}=-3:\frac{x^2}{1}=-3:\frac{2^2}{1}=-\frac{3}{4}\)
Vậy ...
+) Ta có: P(x) = 0 có 3 nghiệm phân biệt
=> Gọi 3 nghiệm đó là m; n ; p.
=> P(x) = ( x - m ) ( x - p ) (x - n)
=> P(Q(x)) = ( x^2 + x + 2013 -m )( x^2 + x + 2013 -n )( x^2 + x + 2013 - p )
Vì P(Q(x)) =0 vô nghiệm nên: x^2 + x + 2013 - m = 0 ;x^2 + x + 2013 - m = 0; x^2 + x + 2013 - m = 0 đều vô nghiệm
=> \(\Delta_m=1^2-4\left(2013-m\right)< 0;\Delta_n=1^2-4\left(2013-n\right)< 0;\Delta_p=1^2-4\left(2013-p\right)< 0\)
=> \(2013-m>\frac{1}{4};2013-n>\frac{1}{4};2013-p>\frac{1}{4}\)
=> P(2013) = ( 2013 - m) (2013 -n ) (2013 - p) >\(\frac{1}{4}.\frac{1}{4}.\frac{1}{4}=\frac{1}{64}\)