tìm x,y biết
x/5=y/7 và 4x-2y = -36
giúp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán này là bài toán xác suất. Ta cần tính xác suất để bạn Bình thắng trong trò chơi. Bước 1: Xác định loại bài toán và ý tưởng giải quyết - Đây là bài toán xác suất. - Ý tưởng giải quyết: + Ta sẽ tính số cách chọn ra tập con lớn nhất của tập thẻ ban đầu thỏa mãn điều kiện đã cho. + Sau đó, ta sẽ tính số cách chọn một thẻ từ tập thẻ đã chọn và tính tổng số cách chọn một thẻ từ tập thẻ ban đầu. + Cuối cùng, ta sẽ tính xác suất theo công thức xác suất. Bước 2: Giải bài toán - Để tính số cách chọn ra tập con lớn nhất của tập thẻ ban đầu thỏa mãn điều kiện đã cho, ta sẽ sử dụng nguyên lý bù trừ (principle of inclusion-exclusion). - Gọi A_i là tập các số ghi trên thẻ i và B là tập các thẻ được chọn ra bởi bạn An. - Ta có công thức tính số cách chọn tập con lớn nhất của tập thẻ ban đầu thỏa mãn điều kiện đã cho: |A_1 ∩ A_2 ∩ ... ∩ A_n| = |A_1| + |A_2| + ... + |A_n| - |A_1 ∪ A_2| - |A_1 ∪ A_3| - ... - |A_{n-1} ∪ A_n| + |A_1 ∪ A_2 ∪ A_3| + ... + (-1)^{n-1} |A_1 ∪ A_2 ∪ ... ∪ A_n| - Tiếp theo, ta sẽ tính số cách chọn một thẻ từ tập thẻ đã chọn và tính tổng số cách chọn một thẻ từ tập thẻ ban đầu. - Số cách chọn một thẻ từ tập thẻ đã chọn là |B|. - Tổng số cách chọn một thẻ từ tập thẻ ban đầu là |A_1 ∪ A_2 ∪ ... ∪ A_n|. - Cuối cùng, ta sẽ tính xác suất theo công thức xác suất: P(\text{"Bạn Bình thắng"}) = \frac{|B|}{|A_1 ∪ A_2 ∪ ... ∪ A_n|} - Để tính xác suất, ta cần tính các giá trị |A_i|, |A_i ∪ A_j|, |A_1 ∪ A_2 ∪ A_3|, ..., |A_1 ∪ A_2 ∪ ... ∪ A_n|. Để tiếp tục giải bài toán, cần tính các giá trị |A_i|, |A_i ∪ A_j|, |A_1 ∪ A_2 ∪ A_3|, ..., |A_1 ∪ A_2 ∪ ... ∪ A_n|.
`A=(-x^3)-2x^2+x^3+4x+5`
`=(-x^3+x^3)-2x^2 +4x+5`
`= -2x^2 +4x+5`
Bậc của đa thức : `2`
Hệ số của đa thức : `-2;4;5`
\(A=\left(-x^3\right)-2x^2+x^3+4x+5\)
\(A=\left(-x^3+x^3\right)-2x^2+4x+5\)
\(A=-2x^2+4x+5\)
`(3/5 x-2)^4 =16/81`
`=> (3/5 x-2)^4 =(+-2/3)^4`
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{5}x-2=\dfrac{2}{3}\\\dfrac{3}{5}x-2=-\dfrac{2}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\dfrac{3}{5}x=\dfrac{8}{3}\\\dfrac{3}{5}x=\dfrac{4}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{40}{9}\\x=\dfrac{20}{9}\end{matrix}\right.\)
\(\left(\dfrac{3}{5}x-2\right)^4=\dfrac{16}{81}\)
\(\Rightarrow\left[\left(\dfrac{3}{5}x-2\right)^2\right]^2=\left(\dfrac{4}{9}\right)^2\)
TH1: \(\left(\dfrac{3}{5}x-2\right)^2=-\dfrac{4}{9}\) (vô lý)
Vì: \(\left(\dfrac{3}{5}x-2\right)^2\ge0\forall x\) mà \(-\dfrac{4}{9}< 0\)
TH2: \(\left(\dfrac{3}{5}x-2\right)^2=\dfrac{4}{9}\)
\(\Rightarrow\left(\dfrac{3}{5}x-2\right)^2=\left(\dfrac{2}{3}\right)^2\)
Ta lại có hai trương hợp:
TH1: \(\dfrac{3}{5}x-2=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{3}{5}x=\dfrac{8}{3}\Rightarrow x=\dfrac{40}{9}\)
TH2: \(\dfrac{3}{5}x-2=-\dfrac{2}{3}\)
\(\Rightarrow\dfrac{3}{5}x=\dfrac{4}{3}\Rightarrow x=\dfrac{20}{9}\)
Điểm M là trung điểm của BC nên \(MC=MB=\dfrac{1}{2}BC\)
Mà: \(AM=\dfrac{1}{2}BC\left(gt\right)\)
\(\Rightarrow AM=MC=MB\)
\(\Rightarrow\Delta AMB\) cân tại M (vì AM = MB)
\(\Rightarrow\widehat{ABC}=\widehat{MAB}\) (hai góc ở đáy)
Tương tự ta có: \(\widehat{BCA}=\widehat{MAC}\)
Mà: \(\widehat{ABC}+\widehat{BCA}+\widehat{BAC}=180^o\)
\(\Rightarrow\widehat{MAB}+\widehat{MAC}+\widehat{BAC}=180^o\)
\(\Rightarrow2\widehat{BAC}=180^o\)
\(\Rightarrow\widehat{BAC}=90^o\)
Cho tam giác ABC ,M là trung điểm của BC , biết AM = 1/2 BC . Chứng minh tam giác ABC vuông tại A
Bạn tìm kiếm học liệu trên olm nhé, đã có nhiều bạn hỏi r nha
Sửa đề bài: Tìm x nguyển để các biểu thức đó nguyên:
Ta có:
\(A=\dfrac{x-13}{x-4}=\dfrac{x-4-9}{x-4}=\dfrac{x-4}{x-4}-\dfrac{9}{x-4}=1-\dfrac{9}{x-4}\)
Để A nguyên thì \(\dfrac{9}{x-4}\) phải nguyên
\(\Rightarrow9\) ⋮ x - 4
\(\Rightarrow x-4\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)
_____________
Ta có:
\(B=\dfrac{5x+1}{x+2}=\dfrac{5x+10-9}{x+2}=\dfrac{5\left(x+2\right)-9}{x+2}=5-\dfrac{9}{x+2}\)
Để B nguyên thì \(\dfrac{9}{x+2}\) phải nguyên:
\(\Rightarrow9\) ⋮ x + 2
\(\Rightarrow x+2\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
\(\Rightarrow x\in\left\{-1;-3;1;-5;7;-11\right\}\)
a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)
Do đó:
\(\dfrac{x}{3}=2\Rightarrow x=3.2=6\)
\(\dfrac{y}{5}=2\Rightarrow y=5.2=10\)
Vậy x = 6; y = 10.
b) Ta có: \(x:2=y:\left(-5\right)=\dfrac{x}{2}=\dfrac{y}{-5}\)
Áp dụng TCDTSBN, ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=-\dfrac{7}{7}=-1\)
Do đó:
\(\dfrac{x}{2}=-1\Rightarrow x=2.\left(-1\right)=-2\)
\(\dfrac{y}{-5}=-1\Rightarrow y=\left(-5\right).\left(-1\right)=5\)
Vậy x = -2; y = 5.
Lời giải:
$T = \frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+....+\frac{99}{7^{100}}$
$7T = \frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+....+\frac{99}{7^{99}}$
$\Rightarrow 6T=7T-T = \frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}}-\frac{99}{7^{100}}$
$42T = 1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{98}}-\frac{99}{7^{99}}$
$\Rightarrow 42T-6T = 1-\frac{100}{7^{99}}+\frac{99}{7^{100}}$
$\Rightarrow 36T = 1-\frac{601}{7^{100}}< 1$
$\Rightarrow T< \frac{1}{36}$
\(\dfrac{x}{5}=\dfrac{y}{7}\\ \Leftrightarrow\dfrac{4x}{20}=\dfrac{2y}{14}=\dfrac{4x-2y}{20-14}=\dfrac{-36}{6}=-6\\ \Rightarrow4x=20.\left(-6\right)=-120;2y=14.\left(-6\right)=-84\\ \Rightarrow x=-30;y=-42\)