có 3 chai sữa giống nhau đều có nhiệt độ là 20*C. Thả chai lớn nhất vào phích đựng nước ở nhiệt độ 42*C. Khi đã cân bằng nhiệt chai thứ nhất nóng tới t1=38*C.lấy chai này ra rồi thả vào phích đó chai thứ 2. Khi cân bằng nhiệt lấy chi thứ 2 ra rồi bỏ chai thứ 3 vào. Hỏi ở trạng thái cân bằng nhiệt chai thứ 3 có nhiệt độ là bao nhiêu. Bỏ qua hao phí nhiệt.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=4x^2+4x+m\ge1998\)
\(\Rightarrow\left(2x+1\right)^2+m\ge1999\)
\(\Rightarrow m\ge\frac{1999}{\left(2x+1\right)^2}\)
a, (n+3)2-(n-1)2
= n2+6n+9-n2+2n-1
= 8n + 8
= 8(n+1) chia hết cho 8
Cái này bạn vẽ hình nhé, mình chỉ giải thôi mình ko có nhiều tg.
a)Có:
ABC+ABx=180°(hai góc kề bù)
=>ABx=180°-80°
=>ABx=100°
Có:
ABI=IBx=ABx:2(BI là pg ABx)
=>ABI=IBx=100°:2:50°
Có:CBA+ABI=CBI(hai góc kề bù)
=>CBI=80°+50°=130°
Có CI là pg của góc C
=>ACI=BCI=C:2
=>ACI=BCI=40°:2=20°
b)Có:
ABx=A+ACB(tc góc ngoài tam giác)
=>A=ABx-ACB=2IBx-2ICB
=2(IBx-ICB) (1)
Có:
IBx=I+ICB(tc góc ngoài tam giác)
=>I=IBx-ICB (2)
Từ (1) và (2)
=>đpcm
Linh ơi! Làm đúng rồi :). Nếu trình bày rõ ràng dễ đọc hơn nữa càng tốt chứ cô check bài mà mắt cứ xoay vòng :)).
Bài bên dưới chỉ chỉnh sửa lại theo đúng hướng của bạn Linh.
a ) ^ABx là góc ngoài của \(\Delta\)ABC tại đỉnh B.
=> ^ABx = 180\(^o\)- ^ABC = 180\(^o\)- 80\(^o\)= 100\(^o\).
Có BI là phân giác ^ABx
=> ^ABI = ^ABx : 2 = 100\(^o\):2 = 50\(^o\).
Ta lại có: ^CBI = ^CBA + ^ABI = 80\(^o\)+ 50\(^o\)= 130\(^o\)
Có CI là phân giác ^BCA
=> ^ BCI = ^BCA : 2 = 40\(^o\): 2 = 20\(^o\).
b/ Chứng minh tổng quát.
Có: ^IBx là góc ngoài của \(\Delta\)IBC tại đỉnh B.
=> ^IBx = ^ICB + ^BIC => ^BIC = ^IBx - ^ICB (1)
Ta có : ^ABx là góc ngoài của \(\Delta\)ABC tại đỉnh B.
=> ^ABx = ^ACB + ^BAC => ^BAC = ^ABx - ^BCA = 2. ^IBx - 2. ^ICB ( chỗ này sử dụng phân giác nhé!)
= 2 ( ^IBx - ^ICB ) = 2. ^BIC ( theo (1))
=> ^BAC = 2. ^BIC
\(A=\frac{3\left(x^2+x+1\right)+6x}{x^2+x+1}=3+\frac{6x}{x^2+x+1};\left(x-1\right)^2\ge0< =>x^2+x+1\ge3x;\)
=> \(A\le3+\frac{6x}{3x}=5\). Max A =5 khi x=1
\(B=\frac{7\left(x^2+x+2\right)+7-7x}{x^2+x+2}=7-\frac{7\left(x-1\right)}{x^2+x+2};\)\(\left(x-3\right)^2\ge0< =>x^2+x+2\ge7\left(x-1\right)\)
=> \(B\ge7-\frac{7\left(x-1\right)}{7\left(x-1\right)}=6\)MinB = 6 khi x =3
(12x3y3z) : (15xy3)
= (12 : 15) (x3 : x) (y3 : y3) z
=\(\frac{12}{15}\)x2z
=\(\frac{4}{5}\)x2z
(nếu sai thì thôi, đừng k sai nha)
Thực hiện phép chia đa thức cho đa thức:
\(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+a-1\right)+\left[1-\left(a-1\right)\right]x+b-\left(a-1\right)\)
Để \(x^3+ax^2+2x+b\) chia hết cho đa thức \(x^2+x+1\):
\(\hept{\begin{cases}1-\left(a-1\right)=0\\b-\left(a-1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}b=1\\a=2\end{cases}}\)