K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

Bài làm :

A B C D E F

a/ Xét \(\diamond EBFD\), có :

  • \(EB//DF\) (vì \(AB//CD\))
  • \(EB=\frac{1}{2}AB=\frac{1}{2}DC=FC\)

\(\Rightarrow \diamond EBFD\) là hình bình hành \(\Rightarrow DE=BF,\:EB//EF\)(1)

b/ Xét \(\diamond AECF\), có :

  • \(AE//FC\) (vì \(AB//CD\))
  • \(AE=\frac{1}{2}AB=\frac{1}{2}DC=FC\)

\(\Rightarrow\:\diamond AECF\) là hình bình hành \(\Rightarrow AF=EC, AF//EC\) (2)

Từ (1) và (2) \(\Rightarrow \diamond EMFN\) là hình bình hành.

\(m^3-m=m\left(m^2-1\right)=\left(m-1\right)m\left(m+1\right)\)

Vì m-1;m;m+! là 3 số nguyên liên tiếp nên có 1 số chia hết cho 3 suy ra tích đó chia hết cho 3 và chia hết cho 2

Mà (3,2)=1

Từ đó suy ra (m-1)m(m+1) chia hết cho 6 hay m^3-m chia hết cho 6 (đpcm)

22 tháng 10 2019

5n3+15n2+10n

=5n(n2+3n+2) chia hết cho 30 ...

22 tháng 10 2019

\(5n^3+15n^2+10n\)

\(=5n\left(n^2+3n+2\right)\)

\(=5n\left(n^2+n+2n+2\right)\)

\(=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]\)

\(=5n\left(n+1\right)\left(n+2\right)\)

Tích 3 số nguyên liên tiếp chia hết cho 3 nên \(n\left(n+1\right)\left(n+2\right)⋮3\)

và \(n\left(n+1\right)\left(n+2\right)⋮2\)(dễ thấy)

Mà (2,3) = 1 nên \(n\left(n+1\right)\left(n+2\right)⋮6\)

\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\)

Vậy\(5n^3+15n^2+10n⋮6\)

22 tháng 10 2019

Bài 1:

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3-x+y\right)\)

\(=2\left(x-y\right)\left(2x+3+y\right)\)

Bài 2:

\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(3x-1-x-1\right)^2\)

\(=\left(2x-2\right)^2\)(1)

b) Thay \(x=\frac{9}{4}\)vào (1) ta được: 

\(\left(2.\frac{9}{4}-2\right)^2\)

\(=\frac{25}{4}\)

Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)

Bài 3:

Ta có: \(M=x^2+4x+5\)

\(=\left(x+2\right)^2+1\)

Vì \(\left(x+2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)

Hay \(M\ge1;\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)

                       \(\Leftrightarrow x=-2\)

Vậy \(M_{min}=1\Leftrightarrow x=-2\)

22 tháng 10 2019

Bài 1 : trên là sai nha mình làm lại

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)

\(=2\left(x-y\right)\left(2x+4y\right)\)

\(=4\left(x-y\right)\left(x+2y\right)\)