Chứng minh rằng 2 tia p.giác của 2 góc kề bù vuông góc với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


tự kẻ hình nha
a) vì Ox là p/g của AOB=> AOx=BOx=AOB/2=150/2=75 độ
ta có DOy=180 độ-90 độ- 75 độ=15 độ ( BOD=90 độ)
COy=180 độ-90 độ-75 độ=15 độ (AOC=90 độ)
=> DOy=COy=15 độ=> Oylà p/g của COD
b) ta có xOC=AOx+AOC=75+90
yOB=yOD+BOD=15+90
=> xOC>yOB

\(A=\left(x-1\right)^2+|y+3|+1\)
Ta thấy : \(\left(x-1\right)^2\ge0\)
\(|y+3|\ge0\)
Suy ra \(\left(x-1\right)^2+|y+3|+1\ge1\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
Vậy \(Min_A=1\)khi \(x=1;y=-3\)
\(B=|x^2-1|+\left(x+1\right)^2+y^2\)
Ta dễ dàng nhận thấy :
\(|x^2-1|\ge0\)
\(\left(x+1\right)^2\ge0\)
\(y^2\ge0\)
Cộng vế với vế ta được \(|x^2-1|+\left(x+1\right)^2+y^2\ge0\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2-1=0\\x+1=0\\y=0\end{cases}< =>\hept{\begin{cases}x=\pm1\\x=-1\\y=0\end{cases}< =>\hept{\begin{cases}x=-1\\y=0\end{cases}}}}\)
Vậy \(Min_B=0\)khi \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

\(B=\left(x-5\right)^2+\left|x-5\right|+2014\)
\(\left(x-5\right)^2\ge0\forall x\)
\(\left|x-5\right|\ge0\forall x\)
=> \(\left(x-5\right)^2+\left|x-5\right|+2014\ge2014\forall x\)
Dấu = xảy ra <=> ( x - 5 )2 = 0 và | x - 5 | = 0
<=> x - 5 = 0
<=> x = 5
Vậy MinB = 2014 khi x = 5
Sai thì mong bạn bỏ qua

ừm, cái này có vẻ là trong gmail của bạn nên nếu muốn vào thì phải có địa chỉ email với cả mật khẩu của bạn ấy, nên là chịu khó gõ lại tí nhé ´w`

tự kẻ hình nha:333
a) vì AB là trung trực của DM=> MH=HD( đặt H là giao điểm của AB và DM)
xét tam giác MAB và tam giác DAB có
MH=HD(cmt)
AHM=AHD(=90 độ)
AH chung
=> tam giác MAB= tam giác DAB(cgc)
=> AM=AD( hai cạnh tương ứng)
vì AC là trung trực của DN=> NK=DK( đặt K là giao điểm của AC và DN)
xét tam giác AKD và tam giác AKN có
DK=NK(cmt)
AKD=AKN(=90 độ)
AK chung
=> tam giác AKD= tam giác AKN( cgc)
=> AN=AD ( hai cạnh tương ứng)
AM=AD(cmt)
=> AM=AN=> tam giác AMN cân A
b) vì E thuộc đường trung trực AB=> EM=ED
vì F thuộc đường trung trực AC=> FD=FN
ta có MN=ME+EF+FN mà EM=ED, FD=FN
=> MN= ED+EF+FD
c) xét tam giác ADF và tam giác ANF có
FD=FN(cmt)
AD=AN(cmt)
AF chung
=> tam giác ADF= tam giác ANF(ccc)
=> ANF=ADF( hai góc tương ứng)
xét tam giác AME và tam giác ADE có
AM=AD(cmt)
AE chung
EM=ED(cmt)
=> tam giác AME= tam giác ADE(ccc)
=> AME=ADE( hai góc tương ứng)
mà AME=ANF( tam giác AMN cân A)
=> ADE=ADF=> AD là p/g của EDF
d) chưa nghĩ đc :)))))))
Gọi ^xOy , ^yOz là hai góc kề bù , Ot , Ot' lần lượt là phân giác của ^xOy và ^yOz
=> ^xOy + ^yOz = 1800 ( kề bù )
=> tOy = 1/2^xOy
=> t'Oy = 1/2^yOz
=> tOy + t'Oy = 1/2^xOy + 1/2^yOz
= 1/2( ^xOy + ^yOz )
= 1/2 . 1800
= 900
=> ĐPCM
GT: - Góc xOz và góc yOz là hai góc kề bù
- Ot là tia phân giác của góc xOz
- Ot' là tia phân giác của góc yOz
KL: Góc tot' là 1 góc vuông
* Chứng minh:
Góc xOt = góc tOz = 1/2 . góc xOz (vì Ot là tia phân giác của góc xOz)
Góc yot' = góc t'Oz = 1/2 . góc yOz (vì Ot' là tia phân giác của góc yOz)
Góc xOz + góc yOz = 180 độ (vì 2 góc kề bù)
Vì \(\widehat{xOz}\) và \(\widehat{yOz}\) là 2 góc kề bù mà
Ot là tia phân giác \(\widehat{xOz}\)
Ot' là tia phân giác \(\widehat{yOz}\)
=> Tia Oz nằm giữa hai tia Ot và Ot' nên:
Góc \(\widehat{tOt'}=\widehat{tOz}+\widehat{t'Oz}=\frac{1}{2}.\widehat{xOz}+\frac{1}{2}.\widehat{yOz}=\frac{1}{2}.\left(\widehat{xOz}+\widehat{yOz}\right)=\frac{1}{2}.180^0=90^0\)
Vậy \(\widehat{tOt'}\) là 1 góc vuông.
Hoc tốt