Cho tam giác ABC vuông ở A, đường trung tuyến AM. Qua A kẻ đường thẳng d vuông góc AC, kẻ BD và CD vuông góc với d tại D và E.C/m AD=AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B H M C E D
a) Xét \(\Delta ABC\)cân tại A có AM là trung tuyến \(\Rightarrow\)M là trung điểm BC
\(\Rightarrow MB=MC\)
Xét \(\Delta MDC\)và \(\Delta MHB\)có: +) \(\widehat{BHM}=\widehat{CDM}=90^o\)
+) \(MB=MC\)
+) \(\widehat{BMH}=\widehat{CMD}\)( đối đỉnh )
\(\Rightarrow\Delta MDC=\Delta MHB\)( cạnh huyền - góc nhọn ) ( đpcm )
b) Từ \(\Delta MDC=\Delta MHB\)\(\Rightarrow\widehat{C}=\widehat{MBH}\)( 2 góc tương ứng )
mà \(\widehat{C}=\widehat{ABC}\)( \(\Delta ABC\)cân tại A ) \(\Rightarrow\widehat{ABC}=\widehat{MBH}\)
Xét \(\Delta BME\)và \(\Delta BMH\)có: +) \(\widehat{BEM}=\widehat{BHM}=90^o\)
+) chung cạnh MB
+) \(\widehat{ABC}=\widehat{HBC}\)
\(\Rightarrow\Delta BME=\Delta BMH\)( cạnh huyền - góc nhọn )
\(\Rightarrow ME=MH\)( 2 cạnh tương ứng ) \(\Rightarrow\Delta EMH\)cân tại M ( đpcm )
Giải:
+) Cứ mỗi bước xóa 2 số thêm 1 số nghĩa là sẽ mất đi một số. Thực hiện 2019 lần theo quy tắc trên thì sẽ còn lại duy nhất 1 số
+) Dễ thấy trong 2020 phân số trên có số 1010/2020 = 1/2
+) Khi các em xóa đến một số bất kì x khác 1/2 thuộc dãy 2020 phân số đó và số 1/2 thì số mới xuất hiện sẽ là: 1/2 + x - 2.1/2 .x = 1/2
Như vậy các e xóa đủ 2019 lần thì vẫn chỉ còn số 1/2
A B C K P Q L
a) AB là đường trung trực của kh nên ta có: AK = AH
P thuộc AB => PK = PH
Xét \(\Delta\)AKP và \(\Delta\)AHP có:
AK = AH; PK = PH; AP chung
=> \(\Delta\)AKP = \(\Delta\)AHP
b) Ta có: AK = AH = AL
=> \(\Delta\)AKL cân tại A => ^AKL = ^ALK => ^AKP =^ALQ (1)
(a) => ^AKP = ^AHP (2)
Dễ dàng chứng minh \(\Delta\)AHQ = \(\Delta\)ALQ ( tương tự câu a)
=> ^ALQ = ^AHQ (3)
Từ (1) ; (2) ; (3) => ^AHP = ^AHQ => HA là phân giác ^PHQ
1a) \(Q=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để Q nguyên \(\Leftrightarrow\frac{3}{12-x}\inℤ\)
\(\Leftrightarrow12-x\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x\in\left\{13;11;15;9\right\}\)
1b) Bạn tự thay từng giá trị của x vừa tìm được ở câu a) vào rồi tính y nhé :
Ta có :\(11x+18y=120\)(1)
VD: Thay \(x=13\)vào (1), ta được :
\(11\cdot13+18y=120\)\(\Leftrightarrow y=\frac{57}{18}\)
2) Ta có : \(\left(x-45\right)^2\ge0,\forall x\)
\(-\left|2y-5\right|\le0,\forall y\)
Dấu "=" xảy ra khi và chỉ khi :\(\left(x-45\right)^2=-\left|2y-5\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x-45=0\\2y-5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=45\\y=\frac{5}{2}\end{cases}}\)
Thay x = 45 ; y = 5/2 vào biểu thức M ta được:
\(M=45^2+\left(\frac{5}{2}\right)^2+\frac{29}{10}\cdot\frac{5}{2}-9\)
\(M=2029,5\)
Q(x) + ( 7 - x3 + 4x2 - x4 + x5 ) = x5 - x4 + x3 + 2x2 - 3x
Q(x) = x5 - x4 + x3 + 2x2 - 3x - ( 7 - x3 + 4x2 - x4 + x5 )
Q(x) = x5 - x4 + x3 + 2x2 - 3x - 7 + x3 - 4x2 + x4 - x5
Q(x) = 2x3 - 2x2 - 3x - 7
Ta có : \(Q\left(x\right)+\left(7-x^3+4x^2-x^4+x^5\right)=x^5-x^4+x^3+2x^2-3x\)
\(Q\left(x\right)=x^5-x^4+x^3+2x^2-3x-7+x^3-4x^2+x^4-x^5\)
\(Q\left(x\right)=2x^3-3x-7-2x^2\)
a. Xét hai tam giác vuông ABD và tam giác vuông MBD có
góc BAD = góc BMD = 90độ
cạnh BD chung
góc ABD = góc MBD
Do đó ; tam giác ABD= tam giác MBD [ cạnh huyền - góc nhọn ]
\(\Rightarrow\)AB = MB
b.Xét tam giác ABC ,có góc A = 90độ , góc C=30 độ
\(\Rightarrow\)góc B = 60 độ ,mà BD là tia phân giác của góc ABC
\(\Rightarrow\)\(\widehat{ABD}=\widehat{DBC}=30^O\)mà \(\widehat{C}=30^o\)\(\Rightarrow\widehat{DBC}=\widehat{DCB}=30^O\)
\(\Rightarrow\Delta BCD\)cân tại D
Ta có \(\Delta BDC\)cân tại D,\(DM\perp BC\)
\(\Rightarrow\)DM là đường trung tuyến của tam giác BDC
\(\Rightarrow\)BM=MC\(\Rightarrow\)M là trung điểm của BC
c,Xét tam giác ADE và tam giác MDC có
\(\widehat{ADE}=\widehat{MDC}\)\((\)đối đỉnh\()\)
\(\widehat{DAE}=\widehat{DMC}=90^O\)
AD=DM\((\)Từ tam giác BAD =tam giác BMD\()\)
Do đó \(\Delta ADE=\Delta MDC\)\((g.c.g)\)
\(\Rightarrow AE=MC\)\(\Rightarrow AE=BA=BM=MC\)
\(\Rightarrow BE=BC\)
\(Xét\Delta BEF\)và \(\Delta BCFcó\)
góc EBF = góc CBF
BF cạnh chung
BE=BC
Do đó tam giác BEF =tam giác BCF [c.g.c]
\(\Rightarrow\widehat{BFE}=\widehat{BFC}=90^O\)
\(\Rightarrow\widehat{EFC}=180^O\)\(\Rightarrow\)Ba điểm C,F,E thẳng hàng
Chúc bạn học tốt
tự kẻ hình nha:3333
a) xét tam giác AHB và tam giác AHC có
AB=AC(gt)
ABC=ACB(gt)
AHB=AHC(=90 độ)
=> tam giác AHB= tam giác AHC(ch-gnh)
=> HB=HC( hai cạnh tương ứng)
b) xét tam giác AHB và tam giác EHC có
AH=EH(gt)
BH=CH(cmt)
AHB=AHC(=90 độ)
=> tam giác AHB= tam giác EHC(cgc)
=> BAH=CEH( hai góc tương ứng)
mà BAH so le trong với CEH=> AB//CE
từ tam giác AHB= tam giác AHC=> BAH=CAH( hai góc tương ứng)
=> CEH=CAH=> tam giác AEC cân C
c) vì AB//HK=> BAH=AHK=> CAH=AHK(CAH=BAH)
=> tam giác AHK cân K=> AK=HK
vì AH vuông góc với BC=> CAH+ACH=90 độ=> ACH=90 độ-CAH
vì AHK+KHC=AHC=> KHC= 90 độ- AHK
=> ACH=KHC (AHK=CAH)
=> tam giác KHC cân K=> KC=HK
=> AK=KC=> K là trung điểm AC