Tìm x, biết
\(\left|\frac{3}{5}-\frac{1}{2}x\right|>\frac{2}{5}\)
Ai nhanh và đúng mình tick nha, giải đầy đủ hộ mình nữa. Cảm ơn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F
có DF; EF là đường trung bình của tg ABC (gt)
=> DF // AC (đl) và EF // AB (đl)
=> ^AED = ^EDF và ^ADE = ^DEF (slt)
xét tg ADE và tg FED có : ED chung
=> tg ADE = tg FED (c-g-c)
tương tự với các tg còn lại nhé b
A B C M N P
ta có MN , MP là đường trung bình của tam giác ABC
\(\Rightarrow MP//AC;NP//AB\)
\(\Rightarrow\widehat{ANM}=\widehat{NMP};\widehat{AMN}=\widehat{MNP}\)
Xét tam giác AMN và tam giác PNM có
cạnh MN chung
Do đó ; tam giác AMN = tam giác PNM [ g.c.g ]
Ta làm tương tự xét 2 cặp tam giác còn lại để rút ra trong một tam giác ba đường trung bình chia tam giác ra làm 4 tam giác bằng nhau
Học tốt nhé
B A I E C F K
a) Xét \(\Delta BAE\)và \(\Delta BFE\)có
\(\widehat{ABE}=\widehat{FBE}\)(gt)
BE chung
=>\(\Delta BEA\)=\(\Delta BEF\)(cạnh huyền-góc nhọn)
=> EA=EF ( 2 cạnh tương ứng)
=> BA=BF(2 cạnh tương ứng)
Xét \(\Delta BKA\)và \(\Delta BKF\)có:
BA = BF (cmt)
\(\widehat{ABK}=\widehat{FBK}\left(gt\right)\)
BK chung
=> \(\Delta BKA\)=\(\Delta BKF\)(c.g.c)
=> AK = KF (2 cạnh tương ứng) (1)
=>\(\widehat{AKB}=\widehat{FKB}\)(2 góc tương ứng)
Mà 2 góc lại kề bù =>\(\widehat{AKB}=\widehat{FKB}=90^o\)(2)
Từ (1),(2)=> đpcm
b) Xét \(\Delta BAC\)và \(\Delta BFI\)có
BA = BF(a)
\(\widehat{B}\)chung
\(\widehat{BAE}=\widehat{BFE}=90^o\)
=> \(\Delta BAC\)=\(\Delta BFI\)(g.c.g)
Xét \(\Delta EAI\)và \(\Delta EFC\)có:
\(\widehat{AEI}=\widehat{FEC}\)(đối đỉnh)
EA = EF( a)
\(\widehat{EAI}=\widehat{CFE}=90^o\)
=> \(\Delta EAI\)= \(\Delta EFC\)(g.c.g)
=> EI=EC.
a) xét \(\Delta ABC\)CÓ
\(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=36+64=100\)
VÌ \(100=100\)
\(\Rightarrow BC^2=AB^2+AC^2\)
VẬY \(\Delta ABC\) VUÔNG TẠI A
trong tam giác ABC ta có :
AB2=62=36
AC2=82=64
BC2=102=100
ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )
=> tam giác ABC vuông tại A
CHÚC BẠN HỌC TỐT !!!
Bài làm:
\(\frac{3}{200}-\frac{3}{110}-\frac{3}{90}-\frac{3}{72}-\frac{3}{56}-...-\frac{3}{2}\)
\(=\frac{3}{200}-3\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\right)\)
\(=\frac{3}{200}-3\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\right)\)
\(=\frac{3}{200}-3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=\frac{3}{200}-3\left(1-\frac{1}{11}\right)\)
\(=\frac{3}{200}-\frac{30}{11}=-\frac{5967}{2200}\)
Học tốt!!!!
Ta có :
2xy + x - 2y = 4
\(\Rightarrow\) 2y ( x - 1 ) + x = 4
\(\Rightarrow\) 2y ( x - 1 ) + x - 1 = 3
\(\Rightarrow\) 2y ( x - 1 ) + ( x - 1 ) = 3
\(\Rightarrow\) ( x - 1 ) . ( 2y + 1 ) = 3
\(\Rightarrow\) x - 1 và 2y + 1 là Ư(3) = { - 3 ; - 1 ; 1 ; 3 }
Ta có bảng :
x - 1 | - 1 | - 3 | 1 | 3 |
2y + 1 | - 3 | - 1 | 3 | 1 |
x | 0 | - 2 | 2 | 4 |
y | - 2 | - 1 | 1 | 0 |
Vậy ...
2xy+x-2y=4
x(2y+1)-2y=4
x(2y+1)-2y-1=3
x(2y+1)-(2y+1)=3
(x-1)(2y+1)=3
Vì x;y là số nguyên => x-1;2y+1 là số nguyên
=> x-1;2y+1 Ư(3)
Ta có bảng:
x-1 | 1 | 3 | -3 | -1 |
2y+1 | 3 | 1 | -1 | -3 |
x | 2 | 4 | -2 | 0 |
y | 1 | 0 | -1 | -2 |
Vậy cặp số nguyên (x;y) cần tìm là: (2;1) ; (4;0) ; (-2;-1) ; (0;-2).
-trường hợp c-g-c là 2 cạnh kề với 1 góc.
- trường hợp g.c.g là 2 góc kề với 1 cạnh.
- trường hợp ch-gn là cạnh huyền kề với một góc .
chúc bạn học tốt !!!
Bài làm
a) Xét tam giác ABM có:
MK là đường trung trực
=> MB = MA ( tính chất đường trung trực )
=> Tam giác ABM cân tại M
b) Vì MK vuông góc AB
CB vuông góc AB
=> MK // CB
=> ^AMK = ^MCB ( đồng vị ). (1)
Vì tam giác ABM cân tại M
Mà MK là trung trực
=> MK là phân giác
=> ^AMK = ^BMK. (2)
Từ (1) và (2) => ^BMK = ^MCB. (3)
Vì tam giác BMK vuông tại K
=> ^BMK + ^MBK = 90°
Vì tam giác ABC vuông tại A
=> ^MBK + ^MBC = 90°
=> ^BMK = ^MBC. (4)
Từ (3) và (4) => ^MBC = ^MCB
bài làm
c) Xét tam giác BIA có:
AH vuông góc với BI
IK vuông góc với AB
Mà AH và IK cắt nhau ở M
=> M là trực tâm
=> BM vuông góc với IA ( đpcm )
d) Xét tam giác HMB và tam giác EMA có:
^MHB = ^MEA = 90°
Cạnh huyền: BM = AM ( cmt )
Góc nhọn: ^HMB = ^EMA ( đối )
=> Tam giác HMB = tam giác EMA ( ch-gn )
=> HM = ME
=> Tam giác MHE cân tại M
=> ^MHE = ^MEH
Xét tam giác MHE có:
^HME + ^MHE + ^MEH = 180°
=> ^HME + 2^MHE = 180°
=> 2^MHE = 180° - ^HME. (5)
Xét tam giác ABM cân tại M có:
^BMA + ^MBA + ^MAB = 180°
=> ^BMA + 2^MAB = 180°
=> 2^MAB = 180° - ^BMA. (6)
Mà ^HME = ^BMA ( đối ). (7)
Từ (5) và (6) và (7) => 2^MHE = 2^MAB
=> ^MHE = ^MAB
Mà hai góc này ở vị trí so le le trong
=> HE // AB
A B C D E I H 1 2 1 2 1 1 2 1
a) Từ I kẻ IH vuông góc với BC
Xét t/giác BID và BIH
có: \(\widehat{B_1}=\widehat{B_2}\)(gt)
BI: chung
\(\widehat{BDI}=\widehat{BHI}=90^0\)
=> t/giác BID = t/giác BID (ch.gn)
=> DI = IH (2 cạnh t/ứng) (1)
CMTT: t/giác ECI = t/giác HCI (ch - gn)
=> EI = IH (2)
Từ (1) và (2) => DI = IE
Nối A và I
TA có: AH // IE (vì cùng vuông góc với AC) => \(\widehat{DAI}=\widehat{AIE}\)(slt)
Xét t/giác DAI và t/giác EIA
có: IA : chung
\(\widehat{ADI}=\widehat{IEA}=90^0\)(gt)
\(\widehat{DAI}=\widehat{AIE}\)(cmt)
=> t/goác DAI = t/giác EIA (ch - gn)
=> DI = EA; AD = EI (các cặp cạnh tương ứng)
mà DI = EI (cmt)
=> AE = AD (đpcm)
b) Xét t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2 (định lí Pi - ta - go)
=> BC2 = 62 + 82 = 100
=> BC = 10 (cm)
Ta có: t/giác BID = t/giác BIH (cmt) => BD = BH (2 cạnh t/ứng)
t/giác CIE = t/giác CIH (cmt) => CH = EC (2 cạnh t/ứng)
=> BD + EC = DH + HC = BC = 10 cm
Ta lại có: AB + AC = BD + AD + AE + EC = (BD + EC) + 2AD = 6 + 8
=> 2AD + 10 = 14
=> 2AD = 4 => AD = AE = 2 cm
A B C I D E K
a) Vì I là giao điểm của phân giác \(\widehat{B}\)và \(\widehat{C}\)
=> AI là phân giác \(\widehat{A}\)
=> ID=IE (1)
\(\Delta ADI\)và \(\Delta AEI\)vuông cân
=> ID=AD; IE=AE (2)
Từ (1)(2) => ED=AE (đpcm)
b) Hạ IK _|_ BC; ID _|_ AB; IE _|_ AC
=> BD=BK; CK=CE; AD=AE
\(\Delta ABC\)vuông tại A có AB=6cm; AC=8cm. Áp dụng định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)
Đặt AD=x => BK=6-x; CK=8-c
=> 6-x+8-x=10
=> x=2
Vậy AD=2cm