Cho x + y < 10 . Tìm max
\(A=\sqrt{6+x}+\sqrt{198+x+2y}\)
P/S: Gửi tới những người ngu xuẩn mà còn thể hiện
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Ta có: \(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2018}\right)\left(x-\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow\left(x^2-\left(x+2018\right)^2\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2108\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow-2018\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow-\left(y+\sqrt{y^2+2018}\right)=x-\sqrt{x^2+2018}\)
\(\Leftrightarrow-y-\sqrt{y^2+2018}=x-\sqrt{x^2+2018}\) (1)
Và có: \(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)\left(y-\sqrt{y^2+2018}\right)=2018\left(y-\sqrt{y^2+2018}\right)\)
\(\Leftrightarrow\left(x-\sqrt{x^2+2018}\right)\left(y^2-y^2-2018\right)=2018\left(y-\sqrt{y^2+2018}\right)\)
\(\Leftrightarrow-2018\left(x-\sqrt{x^2+2018}\right)=2018\left(y-\left(\sqrt{y^2+2018}\right)\right)\)
\(\Leftrightarrow-x-\sqrt{x^2+2018}=y-\sqrt{y^2+2018}\) (2)
Lấy (1) + (2) vế + vế ta được:
\(\left(-y-\sqrt{y^2+2018}\right)+\left(-x-\sqrt{x^2+2018}\right)=\left(x-\sqrt{x^2+2018}\right)+\left(y-\sqrt{y^2+2018}\right)\)
<=>\(-y-\sqrt{y^2+2018}+-x-\sqrt{x^2+2018}=x-\sqrt{x^2+2018}+y-\sqrt{y^2+2018}\)
<=> -y - x = x + y
<=> 2y - 2x =0
<=> -2(x+y)=0
<=> x + y =0
vậy x+y=0
cộng điểm cho mk nha!!!!!!!!!!
ĐKXĐ: \(\hept{\begin{cases}6+x\ge0\\198+x+2y\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-6\\2y\ge-198-x\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-6\\2y\ge198+6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-6\\y\ge-96\end{cases}}\)
Áp dụng bđt Bunhiacopxki ta được
\(A=\sqrt{6+x}+\sqrt{198+x+2y}\le\sqrt{\left(1^2+1^2\right)\left(\sqrt{\left(6+x\right)^2}+\sqrt{\left(198+x+2y\right)^2}\right)}\)
\(=\sqrt{2\left(6+x+198+x+2y\right)}\)
\(=\sqrt{2\left(204+2x+2y\right)}\)\(\le\sqrt{2\left(204+2.10\right)}\)
\(=\sqrt{448}\)
Nên \(A\le\sqrt{448}\)
Dấu "=" xảy ra khi \(\frac{a}{c}=\frac{b}{d}\)và \(x+y=10\)
hay \(\frac{6+x}{1}=\frac{198+x+2y}{1}\)
\(\Leftrightarrow6+x=198+x+2y\)
\(\Leftrightarrow2y=-192\)
\(\Leftrightarrow y=-96\)
Kết hợp \(x+y=10\Rightarrow x=10-\left(-96\right)=106\)
Vậy \(A_{max}=\sqrt{448}\Leftrightarrow\hept{\begin{cases}x=106\\y=-96\end{cases}}\)
P/S : Lần sau những kẻ ngu mà tỏ ra mình giỏi thì hãy rút kinh nghiệm ...
\(A=\sqrt{6+x}+\sqrt{198+x+2y}\)
\(\Leftrightarrow A^2=\left(\sqrt{6+x}+\sqrt{198+x+2y}\right)^2\)
Áp dụng BĐT bunhiacopxki ta có:
\(A^2=\left(\sqrt{6+x}+\sqrt{198+x+2y}\right)^2\le\left(1+1\right)\left(6+x+198+x+2y\right)=2.\left(2x+2y+204\right)\)
\(\le2.\left(20+204\right)=448\)
\(\Leftrightarrow A\le\sqrt{448}\)
\(A=\sqrt{448}\Leftrightarrow\hept{\begin{cases}x+y=10\\\frac{1}{6+x}=\frac{1}{198+x+2y}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=10\\6+x=198+x+2y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=10\\192+2y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=106\\y=-96\end{cases}}\)
Vậy \(A_{max}=\sqrt{448}\Leftrightarrow\hept{\begin{cases}x=106\\y=-96\end{cases}}\)
P/S: mới lớp 8, sai sót xin bỏ qua~