Tìm giá trị nhỏ nhất của biểu thức
\(B=2x^2+40x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a) mẫu chung: \(x^3x^2\left(x-1\right)^2\) hơi dài nên mk ko làm ^_^
b)
\(=\frac{xy\left(a-b\right)+\left(x-a\right)\left(y-a\right)b-\left(x-b\right)\left(y-b\right)a}{ab\left(a-b\right)}\)
\(=\frac{xya-xyb+bxy-abx-aby+a^2b-axy+axb+aby-ab^2}{ab\left(a-b\right)}\)
\(=\frac{ab\left(a-b\right)}{ab\left(a-b\right)}=1\)
\(\left(2x-3\right)^2+\left(2x+1\right)^2-2\left(4x^2-9\right)\)
\(=\left(4x^2-12x+9\right)+\left(4x^2+4x+1\right)-\left(8x^2-18\right)\)
\(=\left(4x^2+4x^2-8x^2\right)+\left(4x-12x\right)+\left(9+1+18\right)\)
\(=-8x+38\)
Thay x = 3 vào bt trên
\(-8.3+38=38-24=14\)
Ta có: \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\sqrt{\left(a+b\right)^2}\ge\sqrt{4ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)(Vì BĐT Cauchy chỉ áp dụng cho 2 số dương)
\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
\(x^2\left(x-2\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-2x^2-\left(x^3-1\right)\)
\(=x^3-2x^2-x^3+1\)
\(=-2x^2+1\)
\(16x^2+y^2+4y-16y-8xy\)
\(=\left(16x^2-8xy+y^2\right)+4y-16y\)
\(=\left(4x+y\right)^2-12y\)
\(=\left(4x+y-\sqrt{12y}\right)\left(4x+y-\sqrt{12y}\right)\)
P/S : Sai thì thôi nha!
\(B=2x^2+40x-1\)
\(=2\left(x^2+20x-\frac{1}{2}\right)\)
\(=2\left(x^2+20x+100-\frac{201}{2}\right)\)
\(=2\left[\left(x+10\right)^2-\frac{201}{2}\right]\)
\(=2\left[\left(x+10\right)^2\right]-201\ge-201\)
Vậy \(B_{min}=-201\Leftrightarrow x+10=0\Leftrightarrow x=-10\)
\(B=2x^2+40x-1\)\(=2\left(x^2+2.10x+100\right)-201\)
\(=2\left(x+10\right)^2-201\)
Vì \(2\left(x+10\right)^2\ge0\forall x\)=>\(2\left(x+10\right)^2-201\ge-201\forall x\)
hay \(B\ge-201\forall x\)
\(MinB=-201\Leftrightarrow x+10=0\Leftrightarrow x=-10\)