\(\sqrt{3X-1}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(\sqrt{x}-3\right)^2+12\sqrt{x}}{3+\sqrt{x}}=\frac{x-6\sqrt{x}+9+12\sqrt{x}}{3+\sqrt{x}}=\frac{x+6\sqrt{x}+9}{3+\sqrt{x}}\)
\(=\frac{\left(3+\sqrt{x}\right)^2}{3+\sqrt{x}}=3+\sqrt{x}\)
Sai đề nha bạn, 2 số dưới mẫu cuối cùng là \(\sqrt{79}\) và \(\sqrt{80}\) mới theo quy luật
Nhận xét: với mọi \(a\inℕ^∗\) ta có :
\(\frac{1}{\sqrt{a-1}+\sqrt{a}}>\frac{1}{\sqrt{a+1}+\sqrt{a}}\)\(\Leftrightarrow\)\(\frac{2}{\sqrt{a-1}+\sqrt{a}}=\frac{1}{\sqrt{a-1}+\sqrt{a}}+\frac{1}{\sqrt{a-1}+\sqrt{a}}>\frac{1}{\sqrt{a-1}+\sqrt{a}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}\)
\(=\frac{\sqrt{a}-\sqrt{a-1}}{\left(\sqrt{a-1}+\sqrt{a}\right)\left(\sqrt{a}-\sqrt{a-1}\right)}+\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a+1}+\sqrt{a}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}\)
\(=\sqrt{a}-\sqrt{a-1}+\sqrt{a+1}-\sqrt{a}=\sqrt{a+1}-\sqrt{a-1}\)
\(\Rightarrow\)\(2B=\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+\frac{2}{\sqrt{5}+\sqrt{6}}+...+\frac{2}{\sqrt{79}+\sqrt{80}}\)
\(>\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+...+\sqrt{81}-\sqrt{79}\)
\(=\sqrt{81}-1=9-1=8\)
\(2B>8\)\(\Rightarrow\)\(B>\frac{8}{2}=4\) ( đpcm )
...
\(\sqrt{3x-1}=4\)
\(\Rightarrow\sqrt{3x-1}=\sqrt{16}\)
\(\Rightarrow3x-1=16\)
\(\Rightarrow3x=16+1\)
\(\Rightarrow3x=17\)
\(\Rightarrow x=\frac{17}{3}=5,\left(6\right)\)
ĐKXĐ : \(3x-1\ge0\Leftrightarrow x\ge\frac{1}{3}\)
Ta có : \(\sqrt{3x-1}=4\)
\(\Leftrightarrow3x-1=16\)
\(\Leftrightarrow3x=17\)
\(\Leftrightarrow x=\frac{17}{3}\left(TmĐKXĐ\right)\)
Vậy \(x=\frac{17}{3}\)