tính các đường chéo , biết cạnh bằng 25 cm, khoảng cách từ hai đường chéo đén cạnh bằng 12 cm
Mong các bạn giúp mình nhanh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử: \(9^n+63=x^2\)
+) Xét n=2k+1 (lẻ):
\(9^{2k+1}+63=9^{2k}.9+63\equiv\left(-1\right)^{2k}.9+3\equiv2\)(mod 5) -> vô lí vì scp không đòng dư với 2 mod 5 -> n=2k
+) Xét n=2k:
\(9^{2k}+63=x^2\Leftrightarrow x^2-9^{2k}=63\Leftrightarrow\left(x-9^k\right)\left(x+9^k\right)=63\)
Đến đây bạn lập bảng là ra nhé!
Ta có:\(2n^4+3n^2+1=\left(n^2\right)^2+2n^21^2+1^2+\left(n^4+n^2\right)=\left(n^2+1\right)^2+n^2\left(n^2+1\right)\)
\(=\left(n^2+1\right)\left(2n^2+1\right)\)
Vì \(\left(n^2+1\right)\left(2n^2+1\right)\)mà \(2n^2+1\ge n^2+1\)
\(\Rightarrow2n^2+1⋮n^2+1\)
\(\Rightarrow2n^2+2-1=2\left(n^2+1\right)-1⋮n^2+!\)
\(\Rightarrow-1⋮n^2+1\)
Mà \(n^2+1>0\)
\(\Rightarrow n^2+1=1\Rightarrow n=0\)
\(2x^3+5x^2-36=0\)
\(\Leftrightarrow2x^3+9x^2-4x^2+18x-18x-36=0\)
\(\Leftrightarrow\left(2x^3+9x^2+18x\right)-\left(4x^2+18x+36\right)=0\)
\(\Leftrightarrow x\left(2x^2+9x+18\right)-2\left(2x^2+9x+18\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2+9x+18\right)=0\)
\(TH1:x-2=0\Leftrightarrow x=2\)
\(TH2:2x^2+9x+18=0\)
Ta có: \(\Delta=9^2-4.2.18=-63< 0\)
Vậy TH2 ko có nghiệm
Vậy x = 2
x4y4 + 64
= x4y4 + 16x2y2 + 64 - 16x2y2
= (x2y2 + 8)2 - (4xy)2
= (x2y2 - 4xy + 8)(x2y2 + 4xy + 8)
a) Ta có:
\(\frac{1}{2\left(m+1\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3m+2}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}\)
\(+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3m+3}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3\left(m+1\right)}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3}{2\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3\left(8m+5\right)}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{24m+15}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{24m+16}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{8\left(3m+2\right)}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{8}{2\left(8m+5\right)}=\frac{4}{8m+5}\left(đpcm\right)\)
b) Ta có: \(\frac{1}{m+1}+\frac{1}{3m+2}+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{3m+2}{\left(m+1\right)\left(3m+2\right)}+\frac{m+1}{\left(m+1\right)\left(3m+2\right)}\)
\(+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4m+4}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4\left(m+1\right)}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4}{3m+2}\left(đpcm\right)\)
hình thoi
mong bạn giúp