1+1+2+3+4+5+6+7+8+9+10+11+12+13+14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài chưa đủ dữ liệu để tính cụ thể mỗi lớp em nhé!
Đặt \(A=2.2^2+3.2^3+...+n.2^n\)
\(\Rightarrow2A=2.2^3+3.2^4+...+n.2^{n+1}\)
\(\Rightarrow A-2A=2.2^2+\left(3.2^3-2.2^3\right)+...+\left[n.2^n-\left(n-1\right).2^n\right]-n.2^{n-1}\)
\(\Rightarrow-A=2.2^2+2^3+2^4+...+2^n-n.2^{n+1}\)
\(\Rightarrow-A=2+2^1+2^2+2^3+...+2^n-n.2^{n+1}\)
\(\Rightarrow-2A=4+2^2+2^3+...+2^{n+1}-n.2^{n+2}\)
\(\Rightarrow-A-\left(-2A\right)=2+2^1-4-n.2^{n+1}-2^{n+1}+n.2^{n+2}\)
\(\Rightarrow A=n.2^{n+2}-\left(n+1\right)2^{n+1}\)
\(\Rightarrow A=2n.2^{n+1}-\left(n+1\right)2^{n+1}\)
\(\Rightarrow A=\left(n-1\right).2^{n+1}\)
\(\widehat{A}\) : \(\widehat{B}\): \(\widehat{C}\) = 3 : 5 : 7
\(\dfrac{\widehat{A}}{3}\) = \(\dfrac{\widehat{B}}{5}\) = \(\dfrac{\widehat{C}}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{A}}{3}\) = \(\dfrac{\widehat{B}}{5}\) = \(\dfrac{\widehat{C}}{7}\) = \(\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}\) = \(\dfrac{180^0}{15}\) = `120
\(\widehat{A}\) = 120 \(\times\) 3 = 360
\(\widehat{B}\) = 120 \(\times\) 5 = 600
\(\widehat{C}\) = 120 \(\times\) 7 = 840
Vì 360 < 600 < 840
Vậy \(\widehat{A}\) < \(\widehat{B}\) < \(\widehat{C}\) nên BC < AC < AB (do trong tam giác cạnh đối diện với góc lớn hơn thì lớn hơn và ngược lại)
\(4\left(x+5\right)+x\left(x+5\right)=\left(x+5\right)\left(x+4\right)\)
Nghiệm của đa thức thỏa mãn:
\(\left(x+5\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)
Tích các nghiệm là: \(\left(-5\right).\left(-4\right)=20\)
A B C M N D
a/ Xét tg AMB và tg NMC có
MB=MC (gt)
MA=MN (gt)
\(\widehat{AMB}=\widehat{NMC}\) (góc đối đỉnh)
=> tg AMB = tg NMC (c.g.c)
b/
Ta có
tg AMB = tg NMC (cmt) \(\Rightarrow\widehat{ABC}=\widehat{BCN}\) Hai góc trên ở vị trí sole trong
=> AB//CN
\(\Rightarrow\widehat{ADC}=\widehat{DCN}\) (góc so le trong) mà \(\widehat{ADC}=90^o\)
\(\Rightarrow\widehat{DCN}=90^o\)
\(2x\left(x-1\right)+x\left(3-2x\right)=2x-23\)
\(\Leftrightarrow2x^2-2x+3x-2x^2=2x-23\)
\(\Leftrightarrow x=2x-23\)
\(\Leftrightarrow2x-x=23\)
\(\Leftrightarrow x=23\)
ơ, thầy Lâm nhìn thấy câu hỏi mà sao em ko thấy nhỉ?
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{49}=\dfrac{z^2}{25}=\dfrac{x^2-y^2+z^2}{9-49+25}=\dfrac{-60}{-15}=4\)
\(\Rightarrow\dfrac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)
\(\Rightarrow\dfrac{y^2}{49}=4\Rightarrow y^2=196\Rightarrow y=\pm14\)
\(\Rightarrow\dfrac{z^2}{25}=4\Rightarrow z^2=100\Rightarrow z=\pm10\)
Lời giải:
$b^2=ac\Rightarrow \frac{b}{a}=\frac{c}{b}$
Đặt $\frac{b}{a}=\frac{c}{b}=k\Rightarrow b=ak; c=bk$
Khi đó:
$\frac{a^{2022}+b^{2022}}{b^{2022}+c^{2022}}=\frac{a^{2022}+(ak)^{2022}}{b^{2022}+(bk)^{2022}}$
$=\frac{a^{2022}(1+k^{2022})}{b^{2022}(1+k^{2022})}=\frac{a^{2022}}{b^{2022}} (1)$
Và:
$(\frac{a+b}{b+c})^{2022}=(\frac{a+ak}{b+bk})^{2022}$
$=[\frac{a(k+1)}{b(1+k)}]^{2022}=(\frac{a}{b})^{2022}=\frac{a^{2022}}{b^{2022}}(2)$
Từ $(1); (2)$ ta có đpcm.
106
1 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14
= 1 + (14 + 1) x 14 : 2
= 1 + 15 x 14 : 2
= 1 + 15 x 7
= 1 + 105
= 106