K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)( luôn đúng )

Vậy ...

10 tháng 11 2019

Có nhiều cách biểu diễn:

VD

\(VT-VP=\frac{\left(a-b-c\right)^2+\left(a-d-e\right)^2+\left(b-c\right)^2+\left(d-e\right)^2}{2}\) (còn rất nhiều ...)

3 tháng 11 2019

Áp dụng BĐT Cauchy cho 2 số không âm:

\(4a^2+9b^2\ge2\sqrt{4a^2.9b^2}=2.6ab=12ab\)

\(9b^2+25c^2\ge2\sqrt{9b^2.25c^2}=2.15bc=30bc\)

\(4a^2+25c^2\ge2\sqrt{4a^2.25c^2}=2.10ac=20ac\)

Cộng từng vế của các BĐT trên:

\(2\left(4a^2+9b^2+25c^2\right)\ge2\left(6ab+10ac+15bc\right)\)

\(\Rightarrow4a^2+9b^2+25c^2\ge6ab+10ac+15bc\)

(Dấu "="\(\Leftrightarrow a=b=c=0\))

3 tháng 11 2019

\(\text{BĐT}\Leftrightarrow\frac{\left(4a-3b-5c\right)^2+3\left(3b-5c\right)^2}{4}\ge0\) (đúng)

Đẳng thức xảy ra khi \(\hept{\begin{cases}4a=3b+5c\\3b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}4a=6b\\4a=10c\end{cases}}\Leftrightarrow a=\frac{3}{2}b=\frac{5}{2}c\)

Không chắc chỗ dấu bằng cho lắm:)

3 tháng 11 2019

Áp dụng BĐT Cauchy cho 2 số không âm:

\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)

\(b^2+1\ge2\sqrt{b^2}=2b\)

\(a^2+1\ge2\sqrt{a^2}=2a\)

Cộng từng vế của các BĐT trên:

\(2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\)

\(\Rightarrow a^2+b^2+1\ge ab+a+b\)

(Dấu "="\(\Leftrightarrow a=b=1\))

3 tháng 11 2019

\(VT-VP=\frac{\left(2a-b-1\right)^2+3\left(b-1\right)^2}{4}\ge0\)

3 tháng 11 2019

Đa thức \(\left(x+1\right)\left(x+2\right)\)có nghiệm \(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vì -1 và -2 là hai nghiệm của đa thức \(\left(x+1\right)\left(x+2\right)\)

Mà để đa thức ax+ bx + 12 chia hết cho \(\left(x+1\right)\left(x+2\right)\)thì -1 và -2 là hai nghiệm của đa thức ax+ bx + 12

Nếu x = -1 thì \(-a-b+12=0\Leftrightarrow a+b=12\)(2)

Nếu x = -2 thì \(-8a-2b+12=0\Leftrightarrow4a+b=6\)(1)

Lấy (1) - (2), ta được: \(3a=-6\Leftrightarrow a=-2\)

\(\Rightarrow b=12+2=14\)

Vậy a = -2, b = 14

3 tháng 11 2019

\(\left(x+1\right)\left(x+2\right)=x^2+3x+2\)

Rồi OK.T sẽ làm theo hướng khác.

ax^3 +bx+12 x^2+3x+2 ax-3a _ ax^3+3ax^2+2ax -3ax^2+x(b-2a)+12 -3ax^2-9ax -6a _ x(b+7a)+6(a+2)

\(\Rightarrow x\left(b+7a\right)+6\left(a+2\right)=0\Rightarrow a=-2;b=14\)

P/S:Chọn phông chữ Hellvea vì chữ to cho dễ nhìn:)

2 tháng 11 2019

A B C D M N E F

Cm: Nối AM:

Xét t/giác ABC có: AM = MB (gt)

                  BN = NC (gt)

=> MN là đường trung bình của t/giác ABC

=> MN // AC và MN = 1/2AC (1)

Xét t/giác ADC có: AF = FD (gt)

                      DE = EC (gt)

=> EF là đường trung bình của t/giác ABC

=> EF // AC và EF = 1/2AC (2)

Từ (1) và (2) => MN // EF và MN = EF => MNEF là hình bình hành (*)

Do ABCD là HCN => AB  = DC => 1/2AB = 1/2DC => AM = DE

Xét t/giác AFM và t/giác DFE

có: AF = FD (gt)

 \(\widehat{A}=\widehat{D}=90^0\) (gt)

 AM = DE (cmt)

=> t/giác AFM = t/giác DFE (c.g.c)

=> FM = FE (2 cạnh t/ứng) (**)

Từ (*) và (**) => MNEF là hình thoi