cho tam giác ABC vuông tại a có AB=6cm AC=8cm trên tia BA lấy D sao cho BD=BC kẻ DE vuông BC tại E
a) cm \(\Delta\)ABE cân và AE//CD
b) AM=MC AE cắt MD =F cm CF vuông AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M = x2 - 4x - 2
= x2 - 2x - 2x + 4 - 6
= x(x - 2) - 2(x - 2) - 6
= (x- 2)2 - 6 \(\ge\)- 6
Dấu "=" xảy ra <=> (x - 2) = 0
=> x = 2
Answer:
\(M=x^2-4x-2\)
\(M=x^2-4x+4-6\)
\(M=\left(x-2\right)^2-6\)
Because \(\left(x-2\right)^2\ge0\forall x\)
so \(\left(x-2\right)^2-6\ge-6\)
or \(M\ge-6\)
Equal sign occors \(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
The minimum of M is \(-6\)\(\Leftrightarrow x=2\)
A B C D H K
a, Xét tam giác AHK và tam giác BHC có
AH = BH [ gt ]
góc AHK = góc BHC [ đối đỉnh ]
HK = HC [ gt ]
Do đó ; tam giác AHK = tam giác BHC [ c.g.c ]
\(\Rightarrow\)AK = BC [ cạnh tương ứng ]
b, Theo câu a , tam giác AHK = tam giác BHC
\(\Rightarrow\)góc AKH = góc BCH [ ở vị trí so le trong ]
Vậy AK // BC
Chúc bạn học tốt
A B C H K 1 1 2
a) Xét \(\Delta KHA\)và \(\Delta CHB\)có :
\(AH=BH\left(gt\right)\)
\(\widehat{H_1}=\widehat{H_2}\)( đối đỉnh )
\(KH=HC\left(gt\right)\)
\(\Rightarrow\Delta KHA=\Delta CHB\left(c.g.c\right)\)
\(\Rightarrow AK=BC\)( 2 góc tương ứng )
b) Ta có : \(\Delta KHA=\Delta CHB\left(cmt\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{B}\)( 2 góc tương ứng )
mà 2 góc nằm ở vị trí SLT
\(\Rightarrow AK//BC\)
\(\frac{1}{2}2^x+4.2^x=9.2^5\)
\(\Leftrightarrow2^x\left(\frac{1}{2}+4\right)=9.2^5\)
\(\Leftrightarrow2^x\frac{9}{2}=9.2^5\)
\(\Leftrightarrow2^x\frac{9}{2}=288\)
\(\Leftrightarrow2^x=64\)
\(\Leftrightarrow2^x=2^6\)
\(\Rightarrow x=6\)
\(\frac{1}{2}.2^x+4.2^x=9.2^5\)
<=> \(2^x\left(\frac{1}{2}+4\right)=9.2^5\)
<=> \(2^x.\frac{9}{2}=9.2^5\)
<=> \(2^x=2^6\)
<=> x = 6
Bài làm:
c) \(-\frac{2}{5}+\frac{5}{3}\left(\frac{3}{2}-\frac{4}{15}x\right)=-\frac{7}{6}\)
\(\Leftrightarrow-\frac{2}{5}+\frac{5}{2}-\frac{4}{9}x=-\frac{7}{6}\)
\(\Leftrightarrow\frac{4}{9}x=-\frac{2}{5}+\frac{5}{2}+\frac{7}{6}\)
\(\Leftrightarrow\frac{4}{9}x=\frac{49}{15}\)
\(\Leftrightarrow x=\frac{49}{15}\div\frac{4}{9}\)
\(\Rightarrow x=\frac{147}{20}\)
Vậy \(x=\frac{147}{20}\)
Bài 2:
a) Ta có: \(F=\frac{3x-2}{x+3}=\frac{\left(3x+9\right)-11}{x+3}=3-\frac{11}{x+3}\)
Để F nguyên \(\Rightarrow\frac{11}{x+3}\inℤ\Leftrightarrow x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow x\in\left\{-14;-4;-2;8\right\}\)
Vậy \(x\in\left\{-14;-4;-2;8\right\}\)thì F nguyên
2b) Tách
\(G=\frac{x^2-2x+4}{x+1}=\frac{x^2+x-3x-3+7}{x+1}=\frac{x\left(x+1\right)-3\left(x+1\right)+7}{x+1}\)
\(=\frac{x\left(x+1\right)}{x+1}-\frac{3\left(x+1\right)}{x+1}+\frac{7}{x+1}=x-3+\frac{7}{x+1}\)
G là số nguyên <=> \(\frac{7}{x+1}\)là số nguyên <=> \(7⋮x+1\)<=> \(x+1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
<=> \(x\in\left\{0;-2;6;-8\right\}\)
a) \(1-\frac{61}{69}=\frac{69}{69}-\frac{61}{69}=\frac{8}{69}\)
\(1-\frac{85}{93}=\frac{93}{93}-\frac{85}{93}=\frac{8}{93}\)
\(\frac{8}{69}>\frac{8}{93}\Rightarrow1-\frac{8}{69}< 1-\frac{8}{93}\)
\(\Rightarrow\frac{61}{69}< \frac{85}{93}\)
b) \(1-\frac{11}{17}=\frac{17}{17}-\frac{11}{17}=\frac{6}{17}=\frac{60}{170}\)
\(1-\frac{113}{173}=\frac{173}{173}-\frac{113}{173}=\frac{60}{173}\)
\(\frac{60}{170}>\frac{60}{173}\Rightarrow1-\frac{60}{170}< 1-\frac{60}{173}\)
\(\Rightarrow\frac{11}{17}< \frac{113}{173}\)
A A A B B B C C C D D D E E E N N N O O O I I I H H H M M M
a) Xét \(\Delta_vMDB\) và \(\Delta_vNEC\) có :
BD = CE(đầu đề ghi BD = BE là sai rồi nhá)
\(\widehat{B}=\widehat{C}\)(tam giác ABC cân tại A)
=> \(\Delta_vMDB=\Delta_vNEC\)(cgv - gn)
=> DM = EN(hai cạnh tương ứng)
b) Xét \(\Delta_vMDI\) và \(\Delta_vNEI\)có :
DM = EN(theo câu a)
\(\widehat{MDI}=\widehat{NEI}\)(đối đỉnh)
=> \(\Delta_vMDI=\Delta_vNEI\left(cgv-gn\right)\)
=> IM = IN(hai cạnh tương ứng)
=> BC cắt MN tại I
=> I là tđ của MN
c) Gọi H là chân đường vuông góc kẻ từ A xuống BC
Xét \(\Delta_vAHB\) và \(\Delta_vAHC\)có :
AB = AC(tam giác ABC cân tại A)
AH chung
=> \(\Delta_vAHB=\Delta_vAHC\left(ch-cgv\right)\)
=> \(\widehat{HAB}=\widehat{HAC}\)
Gọi O là giao điểm của AH với đường thẳng vuông góc với MN kẻ từ I
Xét tam giác OAB và tam giác OAC có :
OA chung
AB = AC(tam giác ABC cân tại A)
góc B = góc C(tam giác ABC cân tại A)
=> tam giác OAB = tam giác OAC(c.g.c)
=> góc OBC = góc OCA (1)
Xét tam giác vuông OIM và tam giác vuông OIN có :
OI chung
IM = IN(theo câu b)
=> tam giác vuông OIM = tam giác vuông OIN(hai cạnh góc vuông)
=> OM = ON(hai cạnh tương ứng)
Xét tam giác OBM và tam giác OCN có :
OM = ON(cmt)
OB = OC(tam giác OAB = tam giác OAC)
BM = CN(tam giác MDB = tam giác NEC)
=> tam giác OBM = tam giác OCN(c.c.c)
=> góc OBM = góc OCM (2)
Từ (1) và (2) => góc OCA = góc OCN = 90 độ , do đó \(OC\perp AC\)
Vậy điểm O cố định
Câu a, DM = EN chứ k phải DM = ED
\(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M nguyên => \(\frac{3}{x^2-2}\)nguyên
=> \(3⋮x^2-2\)
=> \(x^2-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x2 - 2 | 1 | -1 | 3 | -3 |
x2 | 3 | 1 | 5 | -1 |
x | \(\pm\sqrt{3}\) | \(\pm1\) | \(\pm\sqrt{5}\) | Vô nghiệm |
Vì x thuộc Z => x = \(\pm1\)
Bài làm:
\(M=\frac{x^2-5}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M là số nguyên => \(\frac{3}{x^2-2}\inℤ\Rightarrow x^2-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x^2\in\left\{-1;1;3;5\right\}\Rightarrow x\in\left\{-1;1\right\}\)
Vậy x = 1 hoặc x = -1 thì M nguyên
D A C B E M F y G 1 2 1 2
VẼ By là tia phân giác của \(\widehat{ABC}\)CẮT AC TẠI G
A) XÉT \(\Delta BAG\)VÀ \(\Delta BEG\)CÓ
\(\widehat{BAG}=\widehat{BEG}=90^o\)
BG LÀ CẠNH CHUNG
\(\widehat{B_1}=\widehat{B_2}\)( LẬP LUẬN)
=>\(\Delta BAG\)=\(\Delta BEG\)( CH-GN)
=>BA = BE
\(\Rightarrow\Delta ABE\)CÂN TẠI B ( ĐPCM)
VÌ \(\Delta BAG\)=\(\Delta BEG\)(CMT)
=> AG = GE
XÉT \(\Delta AGD\)VÀ \(\Delta EGC\)CÓ
\(\widehat{G_1}=\widehat{G_2}\)( ĐỐI ĐỈNH )
AG = GE ( CMT )
\(\widehat{DAG}=\widehat{CEG}=90^o\)
=>\(\Delta AGD\)=\(\Delta EGC\)( G-C-G )
=> AD = EC
TA CÓ
\(BA+AD=BD\)
\(BE+EC=BC\)
MÀ AD = EC(CMT) VÀ \(BA=BE\)(CMT)
=>\(BD=BC\)
=> \(\Delta BDC\)CÂN TẠI B
XÉT \(\Delta BDC\)CÂN TẠI B
\(\Rightarrow\widehat{BCD}=\frac{180^o-\widehat{B}}{2}\left(1\right)\)
XÉT \(\Delta BAE\)CÂN TẠI B
\(\Rightarrow\widehat{BEA}=\frac{180^o-\widehat{B}}{2}\left(2\right)\)
TỪ (1) VÀ (2)
\(\Rightarrow\widehat{BCD}=\widehat{BEA}\)
MÀ HAI GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ BẰNG NHAU
=>\(AE//CD\)(ĐPCM)
b) vì AE // CD HAY AF // CD \(\Rightarrow\widehat{FAC}=\widehat{DCA}\)( SO LE TROG )
XÉT \(\Delta FAM\)VÀ \(\Delta DCM\)CÓ \(\widehat{FAC}=\widehat{DCA}\)HAY\(\widehat{FAM}=\widehat{DCM};AM=CM\left(GT\right);\widehat{AMF}=\widehat{CMF}\left(DD\right)\)
=>\(\Delta FAM\)=\(\Delta DCM\)(G-C-G)
\(\Rightarrow FM=DM\)
XÉT\(\Delta ADM\)VÀ \(\Delta CFM\)CÓ \(AM=CM\left(GT\right);\widehat{AMD}=\widehat{CMF}\left(GT\right);FM=DM\left(CMT\right)\)
=>\(\Delta ADM\)=\(\Delta CFM\)(C-G-C)
\(\Rightarrow\widehat{DAM}=\widehat{FCM}=90^o\)
mà\(\widehat{FCM}=90^o\)
\(\Rightarrow CF\perp AC\left(ĐPCM\right)\)