Tìm giá trị lớn nhất của biểu thức:
A=2-4\sqrt{x-3}A=2−4−.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2-4\sqrt{x-3}\)
Điều kiện để A xác định: \(x\ge3\)
Vì \(\sqrt{x-3}\ge0\)\(\Rightarrow4\sqrt{x-3}\ge0\)
\(\Rightarrow2-4\sqrt{x-3}\le2\)
Dấu " = " xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)( thỏa mãn )
Vậy \(maxA=2\)\(\Leftrightarrow x=3\)
Ta có : \(\frac{x}{y}=\frac{7}{20}\Leftrightarrow\frac{x}{7}=\frac{y}{20}\)
\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow\frac{y}{5}=\frac{z}{8}\)
Ta lại có : \(\frac{x}{7}=\frac{y}{20}\Leftrightarrow\frac{x}{35}=\frac{y}{100}\)(1)
\(\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{100}=\frac{z}{160}\)(2)
Từ (1) ; (2) ta có : \(\frac{x}{35}=\frac{y}{100}=\frac{z}{160}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{35}=\frac{y}{100}=\frac{z}{160}=\frac{2x+5y-2z}{2.35+5.100-2.160}=\frac{100}{250}=\frac{2}{5}\)
Với \(\frac{x}{35}=\frac{2}{5}\Leftrightarrow x=14\)
Với \(\frac{y}{100}=\frac{2}{5}\Leftrightarrow y=40\)
Với \(\frac{z}{160}=\frac{2}{5}\Leftrightarrow z=64\)
\(\frac{x}{y}=\frac{7}{20}\Rightarrow\frac{x}{7}=\frac{y}{20}\)
\(\frac{y}{z}=\frac{5}{8}\Rightarrow\frac{y}{5}=\frac{z}{8}\Rightarrow\frac{y}{20}=\frac{z}{32}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\)và 2x + 5y - 2z = 100
\(\Rightarrow\frac{2x}{14}=\frac{5y}{100}=\frac{2z}{64}\)và 2x + 5y - 2z = 100
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{14}=\frac{5y}{100}=\frac{2z}{64}=\frac{2x+5y-2z}{14+100-64}=\frac{100}{50}=2\)
\(\frac{2x}{14}=2\Rightarrow x=14\)
\(\frac{5y}{100}=2\Rightarrow5y=200\Rightarrow y=40\)
\(\frac{2z}{64}=2\Rightarrow2z=128\Rightarrow z=64\)
\(\frac{16}{2n}\)= \(2\)
\(\frac{2^4}{2n}\)\(=2\)
\(2^{4-n}\)= \(2^1\)
=> \(4-n=1\)
\(n=4-1\)
\(n=3\)
Vậy , n =3 .
b , \(8^n\): \(2^n\)\(=4\)
\(\left(8:2\right)^n\)\(=4\)
\(4^n\)\(=4\)
=> \(n=1\)
Vậy , n =1
a,Nhân cả 2 vế với bd,ta có:
a/b.bd<c/d.bd => ad<bc
b,Nếu ab<bc => ab-bc<0
Chia cả 2 vế cho bd,ta có:
ab-bc/bd<0 => ab/bd-bc/bd<0 => ab<cd
@maiban5d : đề đang là x - 1 mà bạn làm là x - 2 ??? :D
Học hỏi trên mạng là tốt, nhưng bạn copy mạng là không ai chấp nhận đâu : )
\(\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)
Để phân số có giá trị nguyên => \(\frac{2}{x-1}\)nguyên
=> \(2⋮x-1\)
=> \(x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x-1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
Vậy x thuộc các giá trị trên
a) Đk: x khác 2
A = (x + 1)/(x - 2) = (x - 2 + 3)/(x - 2) = 1 + 3/(x - 2)
Để A nguyên <=> 3/(x - 2) thuộc Z
<=> 3 chia hết x - 2
<=> x - 2 thuộc Ư(3) = {1; -1; 3; -3}
Lập bảng
x - 2 1 - 1 3 -3
x 3 1 5 -1
Vậy ....
\(N=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
=>\(N=\frac{13860}{41580}+\frac{10385}{41580}+\frac{8316}{41580}+\frac{11880}{41580}+\frac{9240}{41580}+\frac{7560}{41580}\)
=>\(N=\frac{61251}{41580}\)
=>N ko phải là số nguyên (đpcm)
HỌC TÔT :)