K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

\(\left(a+b\right)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)\(b^5\)

4 tháng 11 2019

Sorry, mk nhầm

\(\left(a+b\right)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+\)\(5ab^4+b^5\)

4 tháng 11 2019

có tui nè!!!

4 tháng 11 2019

có em nữa

4 tháng 11 2019

\(M=\frac{2}{xy}+\frac{3}{x^2+y^2}\)

\(=3\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{1}{2xy}\)

\(\ge3\cdot\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=12+2=14\)

Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)

4 tháng 11 2019

\(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Mặt khác \(\frac{x}{y}+\frac{y}{x}\ge2\forall xy>0\)

\(\Rightarrow\frac{P}{3+2+2+2}=9\)

Vậy Pmin=9 khi a=b=c

4 tháng 11 2019

Cô si thẳng luôn cho nó chất:v

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

4 tháng 11 2019

t có cách đoán nè nhưng hơi mất công xíu:) Với đk phải có máy tính  casio:)

4 tháng 11 2019

tth_new OK mem,nhà có casio.t sẽ hậu tạ:) Nhưng chả biết hậu tạ ntn nữa.

4 tháng 11 2019

a) Xét tứ giác ACDE có: 
AI = IE
DI = IC
=> Tứ giác ACDE là hình bình hành
Lại có: góc CAD = 90 độ
=> Tứ giác ACED là hình chữ nhật
b) Có góc DAC = ACB = 90 độ ( HBH ABCD)
Ở câu a có tứ giác ACED là hình chữ nhật => Góc ACE = 90 độ
Có góc BCE = góc ACB + góc ACE
=> Góc BCE = 90 độ + 90 độ
=> Góc BCE = 180 độ
=> B,C,E thẳng hàng
c) Xét HBH ABCD có AD = BC
Xét HCN ACDE có AD = CE
=> BC = CE
=> C là trung điểm của BE