K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

Để P max=> x2+2x+2 min
-Có x2+2x+2>=(x+1)2+1
Dấu"=" xảy ra <=> x=-1
=> MaxP=5/1=5 tại x=-1

14 tháng 11 2019

                                       Bài giải

\(P=\frac{5}{x^2+2x+2}\) đạt GTLN khi \(x^2+2x+2\) đạt GTNN

Do \(x^2+2x+2=\left(x+1\right)^2+1\ge1\) Dấu " = " xảy ra khi ( x + 1 )2 + 1 = 1 => ( x + 1 ) 2 = 0 => x + 1 = 0 => x = - 1

\(\Rightarrow\text{ }P\le\frac{5}{1}=5\)

\(\Rightarrow\text{ }Max\text{ }P=5\text{ khi }x=-1\)

5 tháng 11 2019

\(x^ny^{n+1}:x^2y^5=x^{n-2}.y^{n-4}\)

Để \(x^ny^{n+1}⋮x^2y^5\) thì \(\hept{\begin{cases}n-2\ge0\\n-4\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}n\ge2\\n\ge4\end{cases}}\Leftrightarrow n\ge4.\)

5 tháng 11 2019

sợ bị tai nạn giao thông

TL :

Nếu cố tình đi nhanh thì sẽ trơn và ngã dập mặt ( Người ta muốn bảo vệ nhan sắc của mk nên giảm tốc độ ) ^.^

5 tháng 11 2019

nghiện garena ff à cho xin kb nick được ko ạ có thể ghi số id

5 tháng 11 2019

Với x, y, z >0, Có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)

=> Đặt: x + y+z =t => \(t\ge3\)

\(A=\frac{x^2}{1+x}+\frac{y^2}{1+y}+\frac{z^2}{1+z}\ge\frac{\left(x+y+z\right)^2}{3+x+y+z}\)

\(=\frac{t^2}{t+3}=t-3+\frac{9}{t+3}\)

\(=\left(\frac{t+3}{4}+\frac{9}{t+3}\right)+\frac{3\left(t+3\right)}{4}-6\ge2\sqrt{\frac{t+3}{4}.\frac{9}{t+3}}+3.\frac{\left(3+3\right)}{4}-6\)

\(=2.\frac{3}{2}+\frac{9}{2}-6=\frac{3}{2}\)

"=" xảy ra <=> x = y = z =1

5 tháng 11 2019

Bạn làm đề tài gì thế???

mình đăng kí bạn thật luôn,đăng kí mình nữa nhé https://www.youtube.com/channel/UCLtHaHSXSMWGuGs_M0mvf0Q

5 tháng 11 2019

Câu hỏi của pé dễ thương cuồng tfboys - Toán lớp 8 - Học toán với OnlineMath

Tham khảo

25 tháng 4 2020

tham khao di

5 tháng 11 2019

\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{abc}=8\)

\(\Leftrightarrow\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}=64\)

Ta có

\(\left(a+b\right)^2\ge4ab;\left(c+b\right)^2\ge4cb;\left(a+c\right)^2\ge4ac\)

\(\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}\ge64\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)=> Đó là tam giác đều

7 tháng 11 2019

Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

         \(\Rightarrow\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{c}=8\)

        \(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

        \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)

        \(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2+2abc=8abc\)

        \(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2-6abc=0\)

        \(\Rightarrow\left(ab^2-2abc+ac^2\right)+\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)=0\)

        \(\Rightarrow a\left(b^2-2bc+c^2\right)+b\left(a^2-2ac+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)

        \(\Rightarrow a\left(b-c\right)^2+b\left(a-c\right)^2+c\left(a-b\right)^2=0\)(1)

Vì a, b, c là độ dài các cạnh của tam giác nên a, b, c > 0 (2)

Do đó \(\Rightarrow\hept{\begin{cases}a\left(b-c\right)^2\ge0\\b\left(a-c\right)^2\ge0\\c\left(a-b\right)^2\ge0\end{cases}}\)(3)

Từ (1), (2), (3) \(\Rightarrow\left(b-c\right)^2=\left(a-c\right)^2=\left(a-b\right)^2=0\)

                        \(\Rightarrow\left(b-c\right)=\left(a-c\right)=\left(a-b\right)=0\)

                        \(\Rightarrow a=b=c\)

Vậy a, b, c là độ dài ba cạnh của một tam giác đều

5 tháng 11 2019

A B C D H E F R

Gọi R là trung điểm của AH.

E là trung điểm của DH,R là trung điểm của AH nên ER là đường trung bình

\(\Rightarrow ER//DC\) mà \(DC\perp AB\Rightarrow ER\perp AB\)

Xét tam giác ABH có đường cao ER và AR cắt nhau tại R nên R là trực tâm tam giác ABH.

\(\Rightarrow BR\perp AH\)

Do ER là đường trung bình nên \(ER=\frac{1}{2}AC\) mặt khác \(BF=\frac{1}{2}BC\) mà \(AC=BC\Rightarrow ER=BF\)

Ta có ER=BF;ER//BF nên tứ giác ERBF là hình bình hành 

\(\Rightarrow FE//BR\) mà \(BR\perp AE\)  nên \(FE\perp AE\) ( đpcm )