Tìm x,y,z biết: \(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z+2}{2x+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có 3x = 2y = z
=> \(\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)
=> \(\hept{\begin{cases}x=18\\y=27\\z=54\end{cases}}\)
b) 6x = 10y = 15z
=> \(\frac{6x}{30}=\frac{10y}{30}=\frac{15z}{30}\)
=> \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{x+y+z}{5+3+2}=\frac{90}{10}=9\)
=> \(\hept{\begin{cases}x=45\\y=27\\z=18\end{cases}}\)
c) 6x = 4y = 2z
=> \(\frac{6x}{12}=\frac{4y}{12}=\frac{2z}{12}\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{27}{11}\)
=> \(\hept{\begin{cases}x=\frac{54}{11}\\y=\frac{81}{11}\\z=\frac{162}{11}\end{cases}}\)
d) x = 3y = 2z
=> \(\frac{x}{6}=\frac{3y}{6}=\frac{2z}{6}\)
=> \(\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
=> \(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{8}{3}\)
=> \(\hept{\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có:\(\widehat{aOb}\) = 180
\(\Rightarrow\)3 x \(\widehat{aOc}\)=180
\(\Rightarrow\)\(\widehat{aOc}\)=180 : 3 = 60
\(\Rightarrow\)\(\widehat{aOc}\)=\(\widehat{bOd}\)= 60 (2 góc đối đỉnh)
ta có: \(\widehat{aOc}\)+\(\widehat{cOb}\)= 180 (2 góc kề bù)
\(\Rightarrow\)60 + \(\widehat{cOb}\)= 180
\(\Rightarrow\)\(\widehat{cOb}\)= 180 - 60 = 120
\(\Rightarrow\)\(\widehat{aOd}\)=\(cOb\)= 120 (2 goc đối đỉnh)
Vậy \(\widehat{aOc}\)= 60;\(\widehat{cOb}\)= 120;\(\widehat{bOd}\)= 60;\(\widehat{aOd}\)=120
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left|x+5\right|-4=3\)
\(\Rightarrow\left|x+5\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x+5=7\\x+5=-7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-12\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a-b}{a}=\frac{c-d}{c}\)
\(\Leftrightarrow ac-bc=ac-ad\)
\(\Leftrightarrow ac-ac-bc+ad=0\)
\(\Leftrightarrow-bc+ad=0\)hay như nào =))
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời:
\(A=\left(3-\frac{1}{4}+\frac{2}{3}\right)-\left(5+\frac{1}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{3}{2}\right)\)
\(A=\left(\frac{36}{12}-\frac{3}{12}+\frac{8}{12}\right)-\left(\frac{75}{15}+\frac{5}{15}-\frac{18}{15}\right)-\left(\frac{24}{4}-\frac{7}{4}+\frac{6}{4}\right)\)
\(A=\frac{41}{12}-\frac{62}{15}-\frac{23}{4}\)
\(A=\frac{-97}{15}\)
Học tốt
\(A=\left(3-\frac{1}{4}+\frac{2}{3}\right)-\left(5+\frac{1}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{3}{2}\right)\)
\(\Rightarrow A=3-\frac{1}{4}+\frac{2}{3}-5-\frac{1}{3}+\frac{6}{5}-6+\frac{7}{4}-\frac{3}{2}\)
\(\Rightarrow A=\left(3-5-6\right)+\left(-\frac{1}{4}+\frac{7}{4}\right)+\left(\frac{2}{3}-\frac{1}{3}\right)+\frac{6}{5}-\frac{3}{2}\)
\(\Rightarrow A=-8+\frac{3}{2}+\frac{1}{3}+\frac{6}{5}-\frac{3}{2}\)
\(\Rightarrow A=-8+\frac{1}{3}+\frac{6}{5}\)
\(\Rightarrow A=-\frac{97}{15}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)
Ta có : \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)=> \(\frac{a^2}{9}=\frac{b^2}{16}=\frac{c^2}{25}\)=> \(\frac{a^2}{9}=\frac{2b^2}{32}=\frac{c^2}{25}\)
Đặt \(\frac{a^2}{9}=\frac{2b^2}{32}=\frac{c^2}{25}=k\)
=> \(\hept{\begin{cases}a^2=9k\\2b^2=32k\\c^2=25k\end{cases}}\)
=> \(a^2+2b^2-c^2=9k+32k-25k=16k\)
=> \(16k=144\)
=> \(k=9\)
Do đó \(\hept{\begin{cases}a^2=9\cdot9\\2b^2=32\cdot9\\c^2=25\cdot9\end{cases}}\Rightarrow\hept{\begin{cases}a^2=81\\b^2=144\\c^2=225\end{cases}}\Rightarrow\hept{\begin{cases}a=9\\b=12\\c=15\end{cases}}\)
2) Ta có : \(\frac{a}{5}=\frac{b}{7}=\frac{c}{9}\)=> \(\frac{a^2}{25}=\frac{b^2}{49}=\frac{c^2}{81}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{c^2}{81}=\frac{a^2+b^2-c^2}{25+49-81}=\frac{-28}{-7}=4\)
=> \(\hept{\begin{cases}\frac{a^2}{25}=4\\\frac{b^2}{49}=4\\\frac{c^2}{81}=4\end{cases}}\Rightarrow\hept{\begin{cases}a^2=100\\b^2=196\\c^2=324\end{cases}}\Rightarrow\hept{\begin{cases}a=10\\b=14\\c=18\end{cases}}\)
a) đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
đặt \(a^2+2b^2-c^2=144\)
\(\Leftrightarrow\left(3k\right)^2+2\left(4k\right)^2-\left(5k\right)^2=144\)
\(\Leftrightarrow9k^2+32k^2-25k^2=144\)
\(\Leftrightarrow k^2\left(9+32-25\right)=144\)
\(\Leftrightarrow k^216=144\)
\(\Leftrightarrow k^2=9\)
\(\Leftrightarrow k=\sqrt{9}=\pm3\)
do đó
\(\frac{a}{3}=k\Leftrightarrow\frac{a}{3}=\pm3\Rightarrow\hept{\begin{cases}a=3.3=9\\a=3.\left(-3\right)=-9\end{cases}}\)
\(\frac{b}{4}=k\Leftrightarrow\frac{b}{4}=\pm3\Rightarrow\hept{\begin{cases}b=4.3=12\\b=4.\left(-3\right)=-12\end{cases}}\)
\(\frac{c}{5}=k\Leftrightarrow\frac{c}{5}=\pm3\Rightarrow\hept{\begin{cases}c=5.3=15\\c=5.\left(-3\right)=-15\end{cases}}\)
vậy các cặp a,b,c thỏa mãn là \(\left\{a=9;b=12;c=15\right\}\left\{a=-9;b=-12;c=-15\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tam giác ABC và tam giác CDA , có :
AC chung
AB = CD ( vì cùng bằng R \(\in\)đường tròn tâm C )
BC = DA ( vì cùng bằng R \(\in\)đường tròn tâm B )
\(\Rightarrow\)T.giác ABC = t.giác CDA ( c.c.c )
=> BAC = DCA ( 2 góc tù )
Mà 2 góc này ở vị tí So le trong .
=> AD // BC
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{7}{36}-\frac{\frac{5}{48+11}}{24}\right)\cdot4\)
\(=\left(\frac{7}{36}-\frac{5}{59}:24\right)\cdot4\)
\(=\left(\frac{7}{36}-\frac{5}{59}\cdot\frac{1}{24}\right)\cdot4\)
\(=\left(\frac{7}{36}-\frac{5}{1416}\right)\cdot4=\frac{811}{4248}\cdot4=\frac{811}{1062}\)
Đề bài như thế này hay sao vậy? Mỗi khi bạn biểu tính phân số thì bạn gõ latex cho nó dễ
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}z\)
=> \(\frac{2}{3}x.\frac{1}{30}=\frac{3}{4}y.\frac{1}{30}=\frac{5}{6}z.\frac{1}{30}\)
=> \(\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)
\(\Rightarrow\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)
Đến đây bạn tự làm tiếp
\(\frac{2x}{3}=\frac{3y}{4}=\frac{5z}{6}< =>\frac{2x}{90}=\frac{3y}{120}=\frac{5z}{180}< =>\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)
\(< =>\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)
Theo tính chất của dãy tỉ số bằng nhau thì
\(\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}=\frac{x^2+y^2+z^2}{2025+1600+1296}=\frac{724}{4921}\)
\(< =>\hept{\begin{cases}4921x^2=724.2025=1466100\\4921y^2=724.1600=1158400\\4921z=724.1296=938304\end{cases}}\)
\(< =>\hept{\begin{cases}x\approx\pm17\\y\approx\pm15\\z\approx\pm14\end{cases}}\)
Sử dụng tính chất của dãy tỉ số bằng nhau thì :
\(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+1+y-1+z+2}{2+3+4}=\frac{x+y+z+2}{9}\)
Do \(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z+2}{2x+5}\)
Suy ra \(\frac{x+y+z+2}{9}=\frac{x+y+z+2}{2x+5}< =>2x+5=9\)
\(< =>2x=4< =>x=\frac{4}{2}=2\)
Thế vào thì ta được : \(\hept{\begin{cases}\frac{x+1}{2}=\frac{y-1}{3}< =>\frac{3}{2}=\frac{y-1}{3}\\\frac{x+1}{2}=\frac{z+2}{4}< =>\frac{3}{2}=\frac{z+2}{4}\end{cases}}\)
\(< =>\hept{\begin{cases}2\left(y-1\right)=9\\2\left(z+2\right)=12\end{cases}< =>\hept{\begin{cases}2y-2=9\\2z+4=12\end{cases}}}\)
\(< =>\hept{\begin{cases}2y=11< =>y=\frac{11}{2}\\2z=8< =>z=\frac{8}{2}=4\end{cases}}\)
Vậy ta có bộ số x,y,z thỏa mãn đẳng thức sau : \(\left\{2;\frac{11}{2};4\right\}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z}{2x+5}\frac{x+1+y-1+z+2}{2+3+4}=\frac{x+y+z+2}{9}=\frac{x+y+z}{9}\)(1)
Từ (1) => \(\frac{x+y+z}{2x+5}=\frac{x+y+z}{9}\)
=> 2x + 5 = 9
=> 2x = 4
=> x = 2
Thay x vào (1)
=> \(\frac{2+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}\)
=> \(\frac{y-1}{3}=\frac{z+2}{4}=\frac{3}{2}\)
=> \(\hept{\begin{cases}\frac{y-1}{3}=\frac{3}{2}\\\frac{z+2}{4}=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{3}{2}.3+1\\z=\frac{3}{2}.4-2\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{11}{2}\\z=4\end{cases}}\)
Vậy x = 2 ; y = 11/2 ; z = 4