Các cậu ơi tớ cần rất gấp ạ, mong mọi người giúp đỡ owo
Bài 1:
a) (3-2x)(x-2)+4(x-1)(x-3)-2(x-2)(x+2)
b) (xn+yn)(x2n-xn.yn+y2n)(x3n—y3n) (n thuộc N)
c) (x-3)(x+7)-(2x-5)(x+1)
d) (x+8)2–2(x+8)(x–2)+(x–2)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(xy+1\right)+y\left(xy-1\right)-xy\left(x+y\right)\)
\(=X^2y+x+xy^2-y-x^2y-xy^2\)
\(=x-y\)
Ta có: |x - 3| + |x - 5| \(\ge\)|x - 3 + x - 5| = |2x - 8| = 2x - 8 (đk: x \(\ge\)4 => x - 4 \(\ge\)0)
Dấu "=" xảy ra <=> (x - 3)(x - 5) \(\ge\)0
Do x - 4 \(\ge\)0 => x - 3 > 0
=> x - 5 \(\ge\)0 => x \(\ge\)5
Vậy x \(\ge\)5 thì tmđb
Gọi số đo góc thứ nhất là 2x.
=> số đo góc thứ hai là 3x, số đo góc thứ ba là 4x.
Tổng 3 góc trong 1 tam giác là 180 độ.
=> 2x + 3x + 4x = 180. => 9x = 180. => x = 20.
Vậy số đo góc thứ nhất là 2x = 2.20 = 40 độ; số đo góc thứ hai là 3x = 3.20 = 60 độ; số đo góc thứ ba là 4x = 4.20 = 80 độ.
Đặt \(Q=\frac{1}{3}+\frac{1}{3^3}+\frac{1}{3^5}+...+\frac{1}{3^{99}}\)
\(\Rightarrow9Q=3+\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{97}}\)
\(\Rightarrow9Q-Q=\left(3+\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{97}}\right)-\left(\frac{1}{3}+\frac{1}{3^3}+\frac{1}{3^5}+...+\frac{1}{3^{99}}\right)\)
\(8Q=\frac{1}{3^{97}}-\frac{1}{3}\)
\(\Rightarrow Q=\frac{\frac{1}{3^{97}}-\frac{1}{3}}{8}\)
Vậy ...
ĐKXĐ : \(n\ge0\)
+) Nếu \(n=0\)\(\Rightarrow S=2012^{4.0}+2013^{4.0}+2014^{4.0}+2015^{4.0}\)
\(=1+1+1+1=4\) ( là SCP )
+) Nếu \(n\ne0\)\(\Rightarrow S=\left(2012^4\right)^n+\left(2013^4\right)^n+\left(2014^4\right)^n+\left(2015^4\right)^n\)
- Xét ( 20124 )n có CSTC là 6 ( 24 = 16 )
- Xét ( 20134 )n có CSTC là 1 ( 34 = 81 )
- Xét ( 20144 )n có CSTC là 6 ( 44 = 256 )
- Xét ( 20154 )n có CSTC là 5 ( 54 = 625 )
=> S có CSTC là 8 ( 6 + 1 + 6 + 5 = 18 ) ( không phải là SCP )
Vậy S có thể là SCP <=> n = 0
Ta có: \(\left(-8\right)^9=\left[\left(-2\right)^3\right]^9=\left(-2\right)^{27}\)
\(\left(-32\right)^5=\left[\left(-2\right)^5\right]^5=\left(-2\right)^{25}\)
Vì \(27>25\) nên \(\left(-2\right)^{27}< \left(-2\right)^{25}\)
\(\Rightarrow\left(-8\right)^9< \left(-32\right)^5\)
Vậy \(\left(-8\right)^9< \left(-32\right)^5\).