Cho a,b,c>0 thỏa mãn a+b+c =6. CMR a/( √(b^3+1)) + b/√(c^3+1) +c/√(a^3+1) ≥2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: \(x\ge0;x\ne1\)
\(A=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b.
\(A=\dfrac{2\sqrt{x}+2-3}{\sqrt{x}+1}=2-\dfrac{3}{\sqrt{x}+1}\)
Do \(\sqrt{x}+1>0;\forall x\Rightarrow\dfrac{3}{\sqrt{x}+1}>0\)
\(\Rightarrow2-\dfrac{3}{\sqrt{x}+1}< 2\)
Hay \(A< 2\)
Điều kiện : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
a) \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(\Leftrightarrow A=\dfrac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow A=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow A=\dfrac{2x-2\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b) Ta có :
\(A-2=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}-2=\dfrac{2\sqrt{x}-1-2\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+1}\)
Mặt khác : -3 < 0 và \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(\Rightarrow\dfrac{-3}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow A-2< 0\Leftrightarrow A< 2\)
a, Xét tg MAOB ta có
^MAO + ^MBO = 1800
mà 2 góc này đối
Vậy tg MAOB nt 1 đường tròn
b, Ta có MA = MB ; OB = OA
=> MO là đường trung trực đoạn AB
=> MO vuông AB
Xét tam giác MBO vuông tại B, đường cao HB ta có
MB^2 = MH.MO
Xét tam giác MBC và tam giác MDB có
^BMC _ chung ; ^MBC = ^MDB ( cùng chắn cung BC )
Vậy tam giác MBC ~ tam giác MDB (g.g)
=> MB/MD = MC/MB => MB^2 = MC . MD
=> MH . MO = MC . MD
=> MH/MD = MC/MO
Xét tam giác MHC và tam giác MDO ta có
^HMC _ chung
^MH/MD = MC/MO
Vậy tam giác MHC ~ tam giác MDO ( c.g.c)
c, bạn xem lại thiếu dữ liệu nhé
Đặt \(P=\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\)
\(=\dfrac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}+\dfrac{b}{\sqrt{\left(c+1\right)\left(c^2-c+1\right)}}+\dfrac{c}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\)
\(\Rightarrow P\ge\dfrac{2a}{b+1+b^2-b+1}+\dfrac{2b}{c+1+c^2-c+1}+\dfrac{2c}{a+1+a^2-a+1}=\dfrac{2a}{b^2+2}+\dfrac{2b}{c^2+2}+\dfrac{2c}{a^2+2}\)
Mặt khác với mọi \(a>0\) ta có:
\(\dfrac{1}{a^2+2}\ge\dfrac{7-2a}{18}\)
Thật vậy, BĐT trên tương đương:
\(18-\left(7-2a\right)\left(a^2+2\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)^2\left(2a+1\right)\ge0\) (luôn đúng)
Từ đó \(\Rightarrow P\ge\dfrac{2a\left(7-2b\right)}{18}+\dfrac{2b\left(7-2c\right)}{18}+\dfrac{2c\left(7-2a\right)}{18}\)
\(\Rightarrow P\ge\dfrac{7\left(a+b+c\right)}{9}-\dfrac{2\left(ab+bc+ca\right)}{9}\ge\dfrac{7\left(a+b+c\right)}{9}-\dfrac{2\left(a+b+c\right)^2}{27}=2\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=2\)