Giải Hệ phương trình \(\hept{\begin{cases}x+\sqrt{y^2-x^2}=12-y\\x\sqrt{y^2-x^2}=12\end{cases}}\)
ta được 2 nghiệm là \(\left(x_1;y_1\right);\left(x_2;y_2\right)\)
Tính giá trị của biểu thức \(T=x_1^2+x_2^2-y_1^2\)
gg
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ lm bài thoii, hình bn tự vẽ nha !!!
\(a.\) Tứ giác \(BEDC\) có \(\widehat{BEC}=\widehat{BDC}=90^0\)
Suy ra tứ giác \(BEDC\) là tứ giác nội tiếp
Tam giác \(DBA\) vuông tại \(D\) có đường cao \(DL\) nên suy ra \(BD^2=BL.BA\)
\(b.\) Tứ giác \(ADEH\) có:
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên tứ giác \(ADEH\) nội tiếp
Từ đó \(\widehat{BAK}=\widehat{BDE}\)
Mà \(\widehat{BJK}=\widehat{BAK}\) ( 2 góc nội tiếp cùng chắn một cung )
Do đó \(\widehat{BJK}=\widehat{BDE}\)
\(\hept{\begin{cases}x+\sqrt{y^2-x^2}=12-y\left(1\right)\\x\sqrt{y^2-x^2}=12\left(2\right)\end{cases}}\)
\(Đkxđ:y^2\ge x^2\)
Từ: \(\left(1\right)\Rightarrow x^2+2x\sqrt{y^2-x^2}+y^2-x^2=144-24y+y^2\)
\(\Leftrightarrow x\sqrt{y^2-x^2}=144-24y\left(3\right)\)
Thay: \(x\sqrt{y^2-x^2}=12\) vào \(\left(3\right)\)ta được: \(y=5\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\Rightarrow\left\{\left(3;5\right),\left(4;5\right)\right\}\)
Ta có: \(T=3^2+4^2-5^2=0\)
Vậy giá trị cỉa biểu thức \(T=0\)