\(B=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2005}+\sqrt{2006}}\)
\(\)\(C=\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{48}-\sqrt{49}}\)
giúp mik nhaa <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\sqrt{12-6\sqrt{3}}+\sqrt{21-12\sqrt{3}}12−63+21−123
=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(3-2\sqrt{3}\right)^2}(3−3)2+(3−23)2
=\left|3-\sqrt{3}\right|+\left|3-2\sqrt{3}\right|∣∣3−3∣∣+∣∣3−23∣∣
=3-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}3−3+23−3=3
ABCDEFOIJMPQLKT
a) Vì tứ giác BFEC nội tiếp nên \widehat{PFB}=\widehat{ACB}=\widehat{PBF}PFB=ACB=PBF suy ra PF=PBPF=PB
Suy ra MP\perp ABMP⊥AB vì MP là trung trực của BF. Do đó MP||CFMP∣∣CF. Tương tự MQ||BEMQ∣∣BE
b) Dễ thấy M,I,J đều nằm trên trung trực của EF cho nên chúng thẳng hàng. Vậy IJ luôn đi qua M cố định.
c) Gọi FK cắt AD tại T ta có FK\perp ADFK⊥AD tại T. Theo hệ thức lượng IE^2=IF^2=IT.ILIE2=IF2=IT.IL
Suy ra \Delta TIE~\Delta EILΔTIE ΔEIL. Lại dễ có EI\perp EMEI⊥EM, suy ra ITKE nội tiếp
Do vậy \widehat{ILE}=\widehat{IET}=\widehat{IKT}=90^0-\widehat{LIK}ILE=IET=IKT=900−LIK. Vậy IK\perp EL.IK⊥EL.
Thu gọn
`[2x]/y\sqrt{y/[2x]}=\sqrt{([2x]/y)^2. y/[2x]}=\sqrt{[2x]/y}=[\sqrt{2xy}]/y`
`\sqrt{1/[a^4]+1/a}=\sqrt{[1+a^3]/[a^4]}=\sqrt{1+a^3}/[a^2]`
`\sqrt{[16x^3]/[81y]}=[4|x|\sqrt{x}]/[9\sqrt{y}]`
\(8=\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\ge\dfrac{8}{9}\sqrt{3\left(ab+bc+ca\right)}\left(ab+bc+ca\right)\)
\(\Rightarrow\left(ab+bc+ca\right)^3\le27\)
\(\Rightarrow ab+bc+ca\le3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Mới lớp 8 thôi , sai thông cảm =))
a) Ta có : \(B=\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}\)
\(\Rightarrow B=\dfrac{3\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{20-2\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(\Rightarrow B=\dfrac{3\left(\sqrt{x}-5\right)+20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(\Rightarrow B=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(\Rightarrow B=\dfrac{\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{1}{\sqrt{x}+5}\)
b) Ta có : \(P=3.\dfrac{1}{\sqrt{x}+5}:\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\)
\(\Rightarrow P=\dfrac{3}{\sqrt{x}+5}.\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)
\(\Rightarrow P=\dfrac{3}{\sqrt{x}+2}\)
Để P ∈ Z thì \(\dfrac{3}{\sqrt{x}+2}\) ∈ Z
\(\Leftrightarrow3⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-5;-3;-1;1\right\}\)
\(\Leftrightarrow x=1\left(\text{do }\sqrt{x}>0\right)\)
a)\(B=\dfrac{\sqrt{x}+2}{\sqrt{x}+5}+\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}\)
chép sai đề à bn
cùng lớp 9 nhưng đề bài nhì nhằng quá
\(\sqrt{1-x}+\sqrt{4-4x}-12=0\) (ĐKXĐ: x khác 1)
<=> \(\sqrt{1-x}+2\sqrt{1-x}-12=0\)
<=>\(3\sqrt{1-x}=12\)
<=>\(\sqrt{1-x}=4\)
<=>1-x=16
<=>x=-15(TMDK)
a) Có \(\dfrac{1}{1+\sqrt{2}}=\dfrac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{2}-1}{2-1}=\sqrt{2}-1\) ;
\(\dfrac{1}{\sqrt{2}+\sqrt{3}}=\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}=\dfrac{\sqrt{3}-\sqrt{2}}{3-1}=\sqrt{3}-\sqrt{2}\)
Tương tự được \(A=\sqrt{2}-1+\sqrt{3}-2+....+\sqrt{2006}-\sqrt{2005}\)
\(=\sqrt{2006}-1\)
Có \(\dfrac{1}{1-\sqrt{2}}=\dfrac{\sqrt{2}+1}{\left(1-\sqrt{2}\right)\left(\sqrt{2}\right)+1}=\dfrac{\sqrt{2}+1}{1-2}=-\left(\sqrt{2}+1\right)\)
\(\dfrac{1}{\sqrt{2}-\sqrt{3}}=\dfrac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{2}+\sqrt{3}}{2-3}=-\left(\sqrt{2}+\sqrt{3}\right)\)
Tương tự \(C=-\left(\sqrt{2}+1\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...+\left(\sqrt{49}+\sqrt{48}\right)\)
\(=\sqrt{49}-1=7-1=6\)