Trong một túi kín, không nhìn thấy gì bên trong đựng 6 viên bi màu xanh, 8 viên màu đỏ, 3 viên màu vàng, 3 màu trắng cùng chủng loại, kích thước, trọng lượng. Không vạch túi quan sát, thò tay lấy 2 viên bi. Tính xác suất để lấy được viên bi màu trắng?
Lời giải:
Tính xác suất để lấy được viên bi màu trắng? Ý bạn là lấy được 2 viên bi đều là màu trắng.
Tổng số bi: $6+8+3+3=20$ (viên)
Chọn 2 viên bi bất kỳ, có $C^2_{20}$ cách
Chọn 2 viên bi mà 2 viên đều màu trắng, có $C^2_3=3$ (cách)
Xác suất: $\frac{3}{C^2_{20}}=\frac{3}{190}$
Số viên bi trong hộp là :
6 + 8 + 3 + 3 = 20 (viên bi)
Số cách chọn 2 viên bi từ 20 viên là :
\(\dfrac{20!}{2!\left(20-2\right)!}\) = \(\dfrac{20.19}{2.1}\)=190
Ta có 2 trường hợp :
Trường hợp 1 : 1 viên trắng và 1 viên khác màu
Số cách chọn 1 viên bi màu trắng từ 3 viên: 3
Số cách chọn 1 viên bi khác màu từ 17 viên bi còn lại (không phải màu trắng): 17
Số cách lấy 1 viên màu trắng và 1 viên khác màu: 3.17=51
Trường hợp 2: Cả 2 viên bi đều là màu trắngSố cách chọn 2 viên bi từ 3 viên màu trắng:
\(\dfrac{3.2}{2.1}\)=3
Tổng số cách có ít nhất 1 viên bi màu trắng là: 51+3=54
Xác suất để lấy được ít nhất 1 viên bi màu trắng: \(\dfrac{54}{190}\) = 27/95 ≈ 0,2842
Vậy xác suất để lấy được ít nhất 1 viên bi màu trắng là khoảng 28,42%