Tính giúp tôi
1/1x2 + 1/2x3 + 1/3x4 + … + 1/2023x2024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Xét ΔDBE có
EI,BC là các đường trung tuyến
EI cắt BC tại K
Do đó: K là trọng tâm của ΔDBE
Xét ΔDBE có
K là trọng tâm
EI là đường trung tuyến
Do đó: \(EK=\dfrac{2}{3}EI\)
Ta có: EK+KI=EI
=>\(KI+\dfrac{2}{3}EI=EI\)
=>\(KI=\dfrac{1}{3}EI\)
=>\(\dfrac{IK}{EK}=\dfrac{\dfrac{1}{3}EI}{\dfrac{2}{3}EI}=\dfrac{1}{2}\)
=>\(IK=\dfrac{EK}{2}\)
Sửa đề: IB=ID
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b; Xét ΔIAB và ΔICD có
IA=IC
\(\widehat{AIB}=\widehat{CID}\)
IB=ID
Do đó: ΔIAB=ΔICD
=>\(\widehat{IAB}=\widehat{ICD}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
a: Xét ΔMNO và ΔMBO có
MN=MB
NO=BO
MO chung
Do đó; ΔMNO=ΔMBO
b: ta có: ΔMNO=ΔMBO
=>\(\widehat{NMO}=\widehat{BMO}\)
=>\(\widehat{NMA}=\widehat{BMA}\)
Xét ΔNMA và ΔBMA có
MN=MB
\(\widehat{NMA}=\widehat{BMA}\)
MA chung
Do đó: ΔNMA=ΔBMA
=>AN=AB
a: XétΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
Ta có: ΔAMC vuông tại M
=>AC là cạnh lớn nhất trong ΔAMC
=>MC<AC
mà MC=MB
nên BM<AC
c: Xét ΔBAC có DM//AC
nên \(\dfrac{DM}{AC}=\dfrac{BM}{BC}\)
=>\(\dfrac{DM}{AC}=\dfrac{1}{2}\)
=>AC=2DM
mà AC=AB
nên AB=2DM
Bài 9:
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: ta có: ΔBAD=ΔBED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
c: Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
mà AB<BC(ΔABC vuông tại A)
nên AD<CD
Bài 11:
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)
Do đó: ΔAHD=ΔAKD
=>AH=AK
=>ΔAHK cân tại A
c: Xét ΔABC có \(\dfrac{AH}{AB}=\dfrac{AK}{CA}\)
nên HK//BC
\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Rightarrow259-7x=3x+39\)
\(\Rightarrow3x+7x=259-39\)
\(\Rightarrow10x=220\)
\(\Rightarrow x=220:10\)
\(\Rightarrow x=22\)
Vậy: ...
a) \(14x-56=0\)
\(\Rightarrow14x=56\)
\(\Rightarrow x=\dfrac{56}{14}\)
\(\Rightarrow x=4\)
b) \(\dfrac{1}{2}-\dfrac{3}{4}x=0\)
\(\Rightarrow\dfrac{3}{4}x=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{3}{2}\)
c) \(16-x^2=0\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow x=\pm4\)
a) 14�−56=014x−56=0
⇒14�=56⇒14x=56
⇒�=5614⇒x=1456
⇒�=4⇒x=4
b) 12−34�=021−43x=0
⇒34�=12⇒43x=21
⇒�=12:34⇒x=21:43
⇒�=32⇒x=23
c) 16−�2=016−x2=0
⇒�2=16⇒x2=16
⇒�2=42⇒x2=42
⇒�=±4⇒x=±4
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)
Do đó: ΔABD=ΔAED
=>DB=DE
b: AB+BC=AB+BD+DC=AE+DE+CD
DE+AC=AE+EC+DE
mà CD>CE(ΔCED vuông tại E)
nên AB+BC>DE+AC
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2023\cdot2024}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)
\(=1-\dfrac{1}{2024}=\dfrac{2023}{2024}\)
Cảm ơn