K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2019

b) Thanks anh Incursion_03 đã giúp em có ý tưởng từ những bài trước:)

ĐKXĐ: x > -1

Đặt \(\sqrt{1+x}=a\Rightarrow1+x=a^2\Leftrightarrow1=a^2-x\)

Khi đó,kết hợp với đề bài ta có hệ phương trình \(\hept{\begin{cases}x^2+a=1\\a^2-x=1\end{cases}}\)

Lấy phương trình đầu trừ phương trình dưới ta được: \(\left(x-a\right)\left(x+a\right)+\left(a+x\right)=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

22 tháng 6 2019

c) ĐK:...    và em không chắc đâu nhé!

Thêm x2 vào hai vế: \(x\left(x+3\right)+\left(x^2+1\right)=\left(x+3\right)\sqrt{x^2+1}+x^2\)

Đặt \(x+3=a;\sqrt{x^2+1}=b\). PT trở thành:

\(ax+b^2=ab+x^2\Leftrightarrow a\left(x-b\right)-\left(x-b\right)\left(b+x\right)=0\)

\(\Leftrightarrow\left(x-b\right)\left(a-b-x\right)=0\)

...

22 tháng 6 2019

\(C=-x^2+5x-\left(\frac{5}{2}\right)^2+\left(\frac{5}{2}\right)^2\)

\(C=\left[-x^2+5x-\left(\frac{5}{2}\right)^2\right]+\left(\frac{5}{2}\right)^2\)

\(C=-\left[x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]+\frac{25}{4}\)

\(C=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Vì \(\left(x-\frac{5}{2}\right)^2\ge0\Leftrightarrow-\left(x-\frac{5}{2}\right)^2\le0\)

\(\Rightarrow C=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Vậy \(GTNN_C=\frac{25}{4}\)tại \(x=\frac{5}{2}\)

22 tháng 6 2019

\(x+\frac{1}{x}\ge2\Leftrightarrow\frac{x^2+1}{x}\ge2\)

\(\Leftrightarrow x^2+1\ge2x\left(x\ge0\right)\)

\(\Leftrightarrow x^2-2x+1\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\ge0\left(\text{luôn đúng}\right)\)

Vì BĐT cuối đúng nên BĐT đầu đúng (với x >= 0)

22 tháng 6 2019

\(x+\frac{1}{x}\ge2\Leftrightarrow x>0\) vì x ở mẫu thức nên dấu =  không xảy ra nha bạn, lúc này mình ko để ý 

còn câu tiếp theo đề ntn mới đúng, cm tương tự câu trước \(\frac{x^2+2x+1}{x}\ge4\text{ với }x>0\)

22 tháng 6 2019

Đề sai rồi bạn

A E B F C D I

Chứng minh IA= ID là vô lý được không

22 tháng 6 2019

Em thử nha, có gì sai bỏ qua ạ.

Đề cho gọn,Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì \(xy+yz+zx=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}=0\) 

Và \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=0\)

Ta có: \(VT=\sqrt{x^2+y^2+z^2}=\sqrt{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}=0\) (1)

Mặt khác,ta có \(VT=\left|x+y+z\right|=0\) (2)

Từ (1) và (2) ta có đpcm

  • tth_new

​Dòng cuối phải là

VP=|x+y+z|=0 

đúng không????

22 tháng 6 2019

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) \(\left(a,b>0\right)\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

22 tháng 6 2019

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2+b^2+2ab-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)

Vì a,b>0 nên  \(\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)( bất dẳng thức đúng)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu '=' xảy ra khi  a=b

22 tháng 6 2019

Áp dụng BĐT Cauchy cho 2 số dương:

\(\frac{a^2+3}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\frac{1}{\sqrt{a^2+2}}\ge2\)

Dấu "=" xr khi \(\sqrt{a^2+2}=\frac{1}{\sqrt{a^2+2}}\Leftrightarrow a^2+2=1\left(vn\right)\)=> dấu "=" ko xra

=> \(\frac{a^2+3}{\sqrt{a^2+2}}>2\forall a\)

22 tháng 6 2019

Chị check thử câu trả lời của em bên h xem sao ạ (nếu ko truy cập được xin ib ạ,em gửi full link): 

Câu hỏi của Đừng gọi tôi là Jung Hae Ri - Toán lớp 9 | Học trực tuyến