Cho tam giác ABC. Trên tia đối của tia AB lấy D sao cho AD = 0,2 AB. Trên tia đối của tia CB lấy E sao cho 2BC=3CE. CMR:
S(ABC) / S(DBE) = 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,ĐKXĐ \(x\ne-1;-\frac{1}{2}\)
Ta thấy x=0 không là nghiệm của PT
Xét \(x\ne0\)
Khi đó PT
<=> \(\frac{2}{6x-1+\frac{3}{x}}+\frac{5}{4x+5+\frac{2}{x}}+\frac{1}{2x+3+\frac{1}{x}}=\frac{1}{3}\)
Đặt \(2x+\frac{1}{x}=a\)
=> \(\frac{2}{3a-1}+\frac{5}{2a+5}+\frac{1}{a+3}=\frac{1}{3}\)
<=> \(3\left(25a^2+75a+10\right)=6a^3+31a^2+34a-15\)
<=> \(6a^3-44a^2-191a-45=0\)
Xin lỗi đến đây tớ ra nghiệm không đẹp
c, \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\) ĐKXĐ \(x\ne-3\)
<=> \(\left(x-\frac{3x}{x+3}\right)^2+2.\frac{3x^2}{x+3}=7\)
<=> \(\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}-7=0\)
<=> \(\left(\frac{x^2}{x+3}+7\right)\left(\frac{x^2}{x+3}-1\right)=0\)
<=> \(\orbr{\begin{cases}x^2+7x+21=0\\x^2-x-3=0\end{cases}}\)
\(S=\left\{\frac{1\pm\sqrt{13}}{2}\right\}\)thỏa mãn ĐKXĐ
a, \(\sqrt{2}\)+ \(\sqrt{7-2\sqrt{10}}\)= \(\sqrt{2}\)+ \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
= \(\sqrt{2}\)+ \(\sqrt{5}\)- \(\sqrt{2}\)
= \(\sqrt{5}\)
b, 1 - \(\sqrt{7+2\sqrt{6}}\)= 1- \(\sqrt{\left(\sqrt{6}+1\right)}\)= 1 - \(\sqrt{6}\)- 1 = \(\sqrt{6}\)
#mã mã#
a,\(x\sqrt{y}+y\sqrt{x}=\sqrt{x}\sqrt{y}.\left(\sqrt{x}+\sqrt{y}\right).\)
c,\(\sqrt{a}-a^2=\sqrt{a}.\left(1-a\sqrt{a}\right)\)
d,\(x-5\sqrt{x}+6=x-3\sqrt{x}-2\sqrt{x}+6\)
\(=\sqrt{x}.\left(\sqrt{x}-3\right)-2.\left(\sqrt{x}-3\right)\)\(=\left(\sqrt{x}-3\right).\left(\sqrt{x}-2\right)\)
\(vt=\sqrt{-\left(x-2\right)^2+2}+\sqrt{-2\left(x-2\right)^2+3}\)
=>\(VT=< \sqrt{2}+\sqrt{3}\)
xảy ra dấu = khi và chỉ khi x=2
Hình mình không vẽ nhé bạn.
Diện tích tam giác ABC = 3/2 diện tích tam giác ACE ( Chung chiều cao từ đỉnh A và có đáy BC = 3/2 CE )
=> SABC = 3/5 SABE
Tương tự, SABE = 5/6 SDBE ( Chung chiều cao từ đỉnh E, đáy AB = 5/6 DB )
=> SABC = 3/5 x 5/6 SDBE = 1/2 SDBE => đpcm