Cho hình chữ nhật ABCD. Vẽ BH\(\perp\)AC. Gọi M là trung điểm AH, K là trung điểm CD. Chứng minh rằng : BM\(\perp\)MK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Do \(\Delta ABC\) đồng dạng với \(\Delta HIK\)
\(\Rightarrow\frac{AB}{IH}=\frac{BC}{IK}=\frac{AC}{HK}\)
\(\Leftrightarrow\frac{7}{14}=\frac{9}{IK}=\frac{AC}{16}\)
\(\Leftrightarrow\hept{\begin{cases}IK=18\\AC=8\end{cases}}\)
Khi đó :
+) Chu vi \(\Delta ABC\) là : \(AB+BC+CA=7+9+8=24\left(cm\right)\)
+) Chu vi \(\Delta HIK\) là : \(HI+IK+KH=14+18+16=48\left(cm\right)\)

Đặt \(k=x^2\left(k\ge0\right)\)
Phương trình trở thành \(4k^2+7k-2=0\)
Ta có: \(\Delta=7^2+4.4.2=81,\sqrt{\Delta}=9\)
\(\Rightarrow\orbr{\begin{cases}k=\frac{-7+9}{8}=\frac{1}{4}\\k=\frac{-7-9}{8}=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2=\frac{1}{4}\\x^2=-2\left(VL\right)\end{cases}}\)
Vậy phương trình có 2 nghiệm \(\left\{\pm\frac{1}{2}\right\}\)

PTPƯ: CaO + H2O -> Ca(OH)2 (1)
+) nCaO = n/M = 5,6 / 56 = 0,1 mol
(1) => nCa(OH)2 = 0,1 mol => m Ca(OH)2 = n x M = 0,1 x 74 =7,4 g => đáp án C
* Chỗ nào k hiểu thì hỏi lại mình nhé *


B A C E D
a) Câu này bạn biết làm rồi nên mình không làm nữa nhé !!
b) Ta thấy, BD là đường phân giác trong của tam giác ABC, mà \(BD\perp BE\)
Do đó, BE là đường phân giác ngoài của tam giác ABC
\(\Rightarrow\frac{AB}{BC}=\frac{AE}{CE}\Rightarrow AB\cdot CE=AE\cdot BC\)
\(\Leftrightarrow AB\cdot CE=\left(AC+CE\right)\cdot BC\)
\(\Leftrightarrow AB\cdot CE-EC\cdot BC=AC\cdot BC\)
\(\Leftrightarrow EC\cdot\left(AB-BC\right)=AC\cdot BC\)
\(\Leftrightarrow EC\cdot5=15\cdot10\)
\(\Leftrightarrow EC=30\left(cm\right)\)
Vì BD là đường phân giác của \(\widehat{ABC}\), nên
\(\frac{AD}{DC}=\frac{AB}{BC}\)(tính chất đường phân giác)
=> \(\frac{AD}{AD+DC}=\frac{AB}{AB+BC}\)hay \(\frac{AD}{AC}=\frac{AB}{AB+BC}\)
Mà tam giác ABC cân tại A do AB=AC=15cm
=> \(\frac{AD}{15}=\frac{15}{15+10}\)=> \(AD=\frac{15\cdot15}{15}=9\left(cm\right)\)
Vậy DC=AC-AD=15-9=6 (cm)
b) Vì BE _|_ BD nên BE là đường phân giác góc ngoài lại đỉnh B
=> \(\frac{EC}{AE}=\frac{BC}{BA}\)(tính chất đường phân giác)
=> \(\frac{EC}{EC+AC}=\frac{BA}{BC}\Rightarrow EC\cdot BA=BC\left(EC+AC\right)\)
=> \(EC\cdot BA-EC\cdot BC=BC\cdot AC\)
=> \(EC\left(BA-BC\right)=BC\cdot AC\)
Vậy \(EC=\frac{BC\cdot AC}{BA-BC}=\frac{10\cdot15}{15-10}=30\left(cm\right)\)

ĐKXĐ : \(x\ne2,x\ne4\)
Pt \(\Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\) (2)
Đặt \(\frac{x+1}{x-2}=a,\frac{x-2}{x-4}=b\Rightarrow ab=\frac{x+1}{x-4}\)
Khi đó pt (2) trở thành :
\(a^2+ab-12b=0\)
\(\Leftrightarrow a^2-3ab+4ab-12b=0\)
\(\Leftrightarrow a\left(a-3b\right)+4b\left(a-3b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=3b\\a=-4b\end{cases}}\)
Bạn thay vào tính, được nghiệm là \(S=\left\{3,\frac{4}{3}\right\}\)
A B C D K M I N H
Gọi I là trung điểm BH
Xét \(\Delta AHB\)có:
AM=MH
HI=IB
\(\Rightarrow\)MI là đường trung bình \(\Delta AHB\)
\(\Rightarrow MI//AB,MI=\frac{1}{2}AB\)
Xét tứ giác MICK có:
\(MI//CK\left(//AB\right)\)
\(MI=CK\left(=\frac{1}{2}AB\right)\)
\(\Rightarrow MICK\)là hình bình hành
\(\Rightarrow MK//IC\)
Ta có: \(MN//AB\)
\(CB\perp AB\)
\(\Rightarrow MN\perp CB\)tại N
Xét \(\Delta MBC\)có đường cao MN và BH cắt nhau tại I
\(\Rightarrow\)I là trực tâm \(\Delta MBC\)
\(\Rightarrow IC\)là đường cao
\(\Rightarrow IC\perp MB\)
Ta có: \(MK//IC\)
\(IC\perp MB\)
\(\Rightarrow MK\perp MB\left(đpcm\right)\)
#DDN
Thanks bn nke ^^