Cho hai hàm số y=x2 và y=(m-1)x-1 (với m là tham số) có đồ thị lần lượt là (P) và d.Tìm m để (P) cắt d tại hai điểm phân biệt A(x1;y1),B(x2;y2) sao cho y13-y23 =18(x13-x23)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, gọi giao điểm của hai đt là A(x,y)
vậy tọa độ A là nghiệm của
2x + 1 = 3x -2
=> x = 3
thay x = 3 vào y = 2x + 1 ta có y = 3.2 + 1 = 7
vậy giao hai đường thẳng là A( 3;7)
b, ba đường thẳng cùng đi qua 1 điểm khi và chỉ khi đt y = (2m+1)x + m - 3 đi qua C(3; 7)
vậy tọa độ điểm C thỏa mãn pt : y = ( 2m + 1) x + m - 3
ta có : (2m +1).3 + m - 3 = 7
6m + 3 + m - 3 = 7
7m = 7
m = 1
vậy với m = 1 thì đt y = ( 2m +1)x + m - 3 đồng quy với d và d'

Lời giải:
Đặt $\frac{x}{y}+\frac{y}{x}=a$
BĐT cần chứng minh tương đương với:
$(\frac{x}{y}+\frac{y}{x})^2+2\geq 3(\frac{x}{y}+\frac{y}{x})$
$\Leftrightarrow a^2+2\geq 3a$
$\Leftrightarrow a^2-3a+2\geq 0$
$\Leftrightarrow (a-1)(a-2)\geq 0$
$\Leftrightarrow (\frac{x}{y}+\frac{y}{x}-1)(\frac{x}{y}+\frac{y}{x}-2)\geq 0$
$\Leftrightarrow \frac{(x^2-xy+y^2)(x-y)^2}{x^2y^2}\geq 0$
Điều này luôn đúng do:
$(x-y)^2\geq 0$
$x^2y^2>0$
$x^2-xy+y^2=(x-\frac{y}{2})^2+\frac{3}{4}y^2>0$ với mọi $x,y\neq 0$
Do đó ta có đpcm.

Gọi A, B lần lượt là giao điểm của d với Ox và Oy
\(\Rightarrow y_A=0\Rightarrow\left(m^2+2\right)x_A+1=0\Rightarrow x_A=-\dfrac{1}{m^2+2}\Rightarrow OA=\left|x_A\right|=\dfrac{1}{m^2+2}\)
\(x_B=0\Rightarrow y_B=\left(m^2+2\right).0+1=1\Rightarrow OB=\left|y_B\right|=1\)
\(\Rightarrow S_{\Delta OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}.\dfrac{1}{m^2+2}.1=\dfrac{1}{8}\)
\(\Rightarrow m^2+2=4\Rightarrow m^2=2\)
\(\Rightarrow m=\pm\sqrt[]{2}\)

Lời giải:
\(P=\frac{2(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}-\frac{\sqrt{3}+2}{(\sqrt{3}-2)(\sqrt{3}+2)}+\frac{12(\sqrt{3}-3)}{(\sqrt{3}+3)(\sqrt{3}-3)}\)
\(=\frac{2(\sqrt{3}-1)}{3-1}-\frac{\sqrt{3}+2}{3-2^2}+\frac{12(\sqrt{3}-3)}{3-3^2}\)
\(=(\sqrt{3}-1)+(\sqrt{3}+2)-2(\sqrt{3}-3)=7\)

Lời giải:
$\sqrt{20}-\sqrt{21-4\sqrt{5}}=\sqrt{20}-\sqrt{20+1-2\sqrt{20}}=\sqrt{20}-\sqrt{(\sqrt{20}-1)^2}=\sqrt{20}-|\sqrt{20}-1|=\sqrt{20}-(\sqrt{20}-1)=1$

a) Đặt \(\left\{{}\begin{matrix}u=\dfrac{1}{x+y}\\v=\dfrac{1}{x-y}\end{matrix}\right.\left(1\right)\)
hệ phương trình trở thành \(\left\{{}\begin{matrix}2u+v=\dfrac{5}{3}\\6u-2v=1\end{matrix}\right.\)
Đây là hệ hai phương trình bậc nhất 2 ẩn, dùng phép cộng đại số để giải.
Sau khi giải ra u, v thế vào (1) để tìm \(x,y\).
b) Xét 2 trường hợp:
+) \(y\ge2\Rightarrow\left|y-2\right|=y-2\).
Phương trình đầu tiên trở thành \(3x-y+2=3\)
Đến đây bạn giải hệ hai phương trình bậc nhất hai ẩn nhé.
+) Tương tự, \(y\lt2\Rightarrow\left|y-2\right|=2-y\)
*Chú ý: tại mỗi trường hợp, đối chiếu nghiệm với điều kiện của y.
Phương trình hoành độ giao điểm :
x2 = (m - 1)x - 1
<=> x2 - (m - 1)x + 1 = 0
Có nghiệm khi (m - 1)2 - 4 \(\ge0\)
<=> \(\left[{}\begin{matrix}m\ge3\\m\le-1\end{matrix}\right.\)
Hệ thức Viere : \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=1\end{matrix}\right.\)
Thay A(x1 ; y1) ; B(x2 ; y2) vào (P) được
y1 = x12 ; y2 = x22
Khi đó ta được x16 - x26 = 18(x13 - x23)
<=> (x13 - x23)(x13 + x23 - 18) = 0
<=> x1 = x2 hoặc (x1 + x2)3 - 3x1x2(x1 + x2) = 18
Khi x1 = x2 => x1 = x2 = \(\pm1\)
(*) x1 = x2 = 1 <=> 2 = m - 1 <=> m = 3 (tm)
(*) x1 = x2 = -1 <=> -2 = m - 1 <=> m = -1 (tm)
Khi (x1 + x2)3 - 3x1x2(x1 + x2) = 18
<=> (m - 1)3 - 3(m - 1) = 18
<=> (m - 1)3 - 27 - 3(m - 1) + 9 = 0
<=> (m - 4)[(m - 1)2 + 3(m - 1) + 6] = 0
<=> (m - 4)(m2 + m + 4) = 0
<=> m = 4 (vì m2 + m + 4 > 0) (tm)
Vậy m \(\in\) {4 ; -1 ; 3}