K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

Lời giải :

\(A=\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

\(A=\sqrt{2}\cdot\sqrt{3-\sqrt{5}}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(A=\sqrt{6-2\sqrt{5}}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(A=\sqrt{\left(\sqrt{5}-1\right)^2}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(A=\left(\sqrt{5}-1\right)\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(A=\left(\sqrt{5}-1\right)^2\left(3+\sqrt{5}\right)\)

\(A=\left(5-2\sqrt{5}+1\right)\left(3+\sqrt{5}\right)\)

\(A=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(A=2\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(A=2\left(9-5\right)\)

\(A=8\)

30 tháng 6 2019

\(\approx103680.0018\)

30 tháng 6 2019

\(\frac{5^7}{9^8}+5\frac{6^8}{3^4}=\frac{5^7}{9^8}+\frac{5.3^4.6^8}{3^4}\)

\(=\frac{5^7}{9^8}+\frac{5.3^{16}.6^8}{9^2.9^6}=\frac{5^7}{9^8}+\frac{5.3^{24}.2^8}{9^8}=\frac{5\left(5^6+3^{24}.2^8\right)}{9^8}\)

30 tháng 6 2019

 Do vật dẫn có điện trở

trả lời

do điện trở

chc bạn

hc tốt

30 tháng 6 2019

a,Bạn xét 3 th

th1: x>=-1

th2: 1>x>-1

th3:x<=1

rồi trong từng th bạn bỏ dấu gttd và giải

b, \(\frac{x^2}{3}+\frac{48}{x^2}=10\left(\frac{x}{3}-\frac{4}{x}\right)\)

tương đương \(x^2+\frac{144}{x^2}=10\left(x-\frac{12}{x}\right)\)(nhân cả 2 vế với 3)

tương đương \(\left(x-\frac{12}{x}\right)^2+24-10\left(x-\frac{12}{x}\right)\)=0

đặt (x-12/x)=a

khi đó a^2-10a+24=0

giải a rồi tìm x thôi 

c, đặt \(\sqrt[3]{x}\)=a

khi đó ta có 2a^2-5a=3

giải a rồi tìm x thôi

Chúc bạn học tốt!

30 tháng 6 2019

\(\frac{x^2+5}{\sqrt{x^2+4}}=\sqrt{x^2+4}+\frac{1}{\sqrt{x^2+4}}\ge2.\)(BĐT Cauchy)

Dấu "=" xra khi \(\sqrt{x^2+4}=\frac{1}{\sqrt{x^2+4}}\Leftrightarrow x^2+4=1\left(vl\right)\)

Dấu "=" ko xra=>đpcm

30 tháng 6 2019

Witch Rose: Dùng luôn AM-GM dưới mẫu cũng được mà.

\(\frac{x^2+5}{\sqrt{x^2+4}}=\frac{x^2+5}{\sqrt{x^2+4}.1}\ge\frac{x^2+5}{\frac{x^2+5}{2}}=2\)

Dấu " = " xảy ra <=> \(1=x^2+4\)( vô lý ) 

=> đpcm

30 tháng 6 2019

\(y=\frac{2x+1}{x^2+2}\)

\(\Leftrightarrow yx^2-2x+2y-1=0\)(1)

Ta có: y thuộc miền giá trị của hàm số khi và chỉ khi (1) có nghiệm

Với: \(y=0\) thì x = -1/2

Với: \(y\ne0\) thì (1) có nghiệm khi: \(\Delta^'\ge0\)

 \(\Leftrightarrow1^2-y\left(2y-1\right)\ge0\)

\(\Leftrightarrow-2y^2+y+1\ge0\)

\(\Leftrightarrow2y^2-y-1\le0\)

\(\Leftrightarrow-\frac{1}{2}\le y\le1\)

Vậy: Min y = -1/2 và Max y = 1

=.= hk tốt!!

30 tháng 6 2019

\(y=\frac{2x+1}{x^2+2}\Leftrightarrow x^2y+2y-2x-1=0\)

Pt có nghiệm x<=>\(\Delta'=1-y\left(2y-1\right)=-2y^2+y+1\ge0\)\(\Leftrightarrow-\frac{1}{2}\le y\le1\)

Max y=1 \(\Leftrightarrow x^2-2x+1=0\Leftrightarrow x=1\)

\(Miny=-\frac{1}{2}\Leftrightarrow-\frac{1}{2}x^2-2x-2=0\Leftrightarrow x=-2\)

30 tháng 6 2019

      ĐK :\(\hept{\begin{cases}x>=0\\x\ne1\end{cases}}\)

Ta có: \(A=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{\sqrt{x}+1}{x-1}-\frac{2}{x-1}\right]\)

          

30 tháng 6 2019

Ta có: H thuộc BC ( gt ) 
=> BC=BH+HC
mà BH=3,2 cm ( gt )
=> BC=3,2+HC
<=>HC=BC-3,2
Xét tam giác ABC có: Góc BAC=90 độ
AH vuông góc vs BC ( gt )
=> AC^2=HC.BC ( hệ thức luợng trong tam giác vuông )
mà HC=BC-3,2 ( cmt )
BH=3,2 cm ( gt )
AC=3 cm ( gt )
=> 3^2=( BC-3,2 ).BC
      ...... ( bạn tự nhân ra rồi phân tích đa thức thành nhân tử nhé! )
<=> BC=5 cm
mà HC=BC-3,2
=> HC=5-3,2=1,8 cm
Xét tam giác AHC có: Góc AHC=90 độ ( AH vuông góc voiws BC - gt )
=> AH^2+HC^2=AC^2 ( định lý Pytago thuận )
mà HC=1,8 cm ( cmt )
AC= 3 cm ( gt )
=> AH^2+1,8^2=3^2
.... ( bạn tự tính nhé! )
<=> AH= 2,4 cm