Cho 3 số dương a, b, c thỏa mãn : \(\frac{2a+b-c}{c}=\frac{2b+c-a}{a}=\frac{2c+a-b}{b}\)
Tính \(A=\frac{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có m=(1+1/3+1/5+1/7+.....+1/2019)-(1/2+1/4+......+1/2018)
=
(1+1/2+1/3+.......+1/2019)-(1/2+1/4+.....+1/2018)-(1/2-1/4-1/6-.....-1/2018)
=(1+1/2+1/3+.....+1/2019)-2.(1/2+1/4+.....+1/2018)
=(1+1/2+1/3+....+1/2019)-(1+1/2+.....+1/2019
=1/2010+1/2011+.....+1/2019=N
=>(m-n)^2=0^2=0
vậy( m-n)^2=0
Ta có: \(\left(1-\frac{1}{2^2}\right)\times\left(1-\frac{1}{3^2}\right)\times\left(1-\frac{1}{4^2}\right)\times...\times\left(1-\frac{1}{50^2}\right)\)
\(=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times...\times\frac{2499}{2500}\)
\(=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times\frac{3.5}{4.4}\times...\times\frac{49.51}{50.50}\)
\(=\frac{1.2.3.....49}{2.3.4.....50}\times\frac{3.4.5.....51}{2.3.4.....50}\)
\(=\frac{1}{50}\times\frac{51}{2}\)
\(=\frac{51}{100}\)
theo đề ra ta có :x/5=y/1=z/-2=>x/5=y/1=2z/-4=x+y-2z/5+1-(-4)=160/10=16
=>x/5=16;y/1=16;z/-2=16=>x=80;y=16;z=-32
vậy x=80;y=16;z=-32
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{1}=\frac{z}{-2}=\frac{x+y-2z}{5+1+4}=\frac{160}{10}=16\)
\(x=16.5=80\)
\(y=16.1=16\)
\(z=16\left(-2\right)=-32\)
Ta có: \(\left(3x-2\right)^4=\left(3x-2\right)^6\)
\(\Leftrightarrow\left(3x-2\right)^4-\left(3x-2\right)^6=0\)
\(\Leftrightarrow\left(3x-2\right)^4\left[1-\left(3x-2\right)^2\right]=0\)
+ \(\left(3x-2\right)^4=0\)\(\Leftrightarrow\)\(3x-2=0\)\(\Leftrightarrow\)\(x=\frac{2}{3}\)
+ \(1-\left(3x-2\right)^2=0\)\(\Leftrightarrow\)\(\left(3x-2\right)^2=1\)
\(\Leftrightarrow\)\(3x-2=\pm1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}\)
Vậy \(x=\frac{2}{3}\)hoặc \(x=\frac{1}{3}\)hoặc \(x=1\)
Ta có \(\frac{2010c-2011b}{2009}=\frac{2011a-2009c}{2010}=\frac{2009b-2010a}{2011}\)
=> \(\frac{2009.2010c-2009.2011b}{2009^2}=\frac{2010.2011a-2009.2010c}{2010^2}=\frac{2009.2011b-2010.2011a}{2011^2}\)
= \(\frac{2009.2010c-2009.2011b+2010.2011a-2009.2010c+2009.2011b-2010.2011a}{2009^2+2010^2+2011^2}\)= 0
=> \(\hept{\begin{cases}2010c-2011b=0\\2011a-2009c=0\\2009b-2010a=0\end{cases}}\Rightarrow\hept{\begin{cases}2010c=2011b\\2011a=2009c\\2009b=2010a\end{cases}}\Rightarrow\hept{\begin{cases}\frac{c}{2011}=\frac{b}{2010}\\\frac{a}{2009}=\frac{c}{2011}\\\frac{b}{2010}=\frac{a}{2009}\end{cases}}\)
=> \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}\)(đpcm)
Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\Rightarrow\hept{\begin{cases}a=2018k\\b=2019k\\c=2020k\end{cases}}\)
Khi đó 4(a - b)(b - c) = 4(2018k - 2019k)(2019k - 2020k)
= 4(-k).(-k)
= 4k2 (1)
Lại có (c - a)2 = (2020k - 2018k)2 = (2k)2 = 4k2 (2)
Từ (1)(2) => 4(a - b)(b - c) = (c - a)2