K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

A B C D N M

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có BD là đường phân giác trong của tam giác ABC (gt)

\(\Rightarrow\frac{AD}{DC}=\frac{AB}{BC}\)( tc)

\(\Rightarrow\frac{AD}{DC}=\frac{3}{5}\)

\(\Rightarrow\frac{AD}{3}=\frac{DC}{5}=\frac{AD+DC}{3+5}=\frac{AC}{8}=\frac{8}{8}=1\)( tc của dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{cases}}\)

b) Xét tứ giác BMDN có \(\hept{\begin{cases}MD//BN\left(MD//BC,N\in BC\right)\\ND//MB\left(ND//AB,M\in AB\right)\end{cases}}\)\(\Rightarrow BMND\)là hình bình hành ( dhnb) (3) 

Xét tam giác ABC có: \(MD//BC\left(gt\right)\)

\(\Rightarrow\frac{AD}{AC}=\frac{MD}{BC}\)( hệ quả của định lý Ta-let) 

\(\Rightarrow\frac{3}{8}=\frac{MD}{10}\)

\(\Rightarrow MD=3,75\left(cm\right)\left(1\right)\)

Xét tam giác ABC có \(ND//AB\left(gt\right)\) 

\(\Rightarrow\frac{DC}{AC}=\frac{ND}{AB}\)( hệ quả của định lý ta-let) 

\(\Rightarrow\frac{5}{8}=\frac{ND}{6}\)

\(\Rightarrow ND=3,75\left(cm\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow ND=MD\) (4)

Từ (3) và (4) \(\Rightarrow BMDN\)là hình thoi (dhnb)

c) \(S_{BMDN}=4.3,75=15\left(cm\right)\)

1 tháng 3 2020

Tui viết đó nhá,ko phải copy đâu nha !

29 tháng 2 2020

\(a,BaO;ZnO;SO_3;CO_2\)

\(b+c,\)Hợp chất Oxit axit:

\(SO_3\): Lưu huỳnh tri oxit

\(CO_2\): Cacbon đi oxit

Hợp chất Oxit bazo:

\(BaO\): Bari oxit

\(ZnO\): Kẽm (II) oxit

29 tháng 2 2020

a) CTHH của oxit: BaO, ZnO, SO3, CO2

b) Oxit axit:   SO3, CO2

Oxit bazo: BaO, ZnO

c)  CO2 : Cacbon đioxit

SO3: Lưu huỳnh trioxit

BaO: Bari oxit

ZnO: Kẽm oxit

29 tháng 2 2020

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}\left(\frac{1}{a}+\frac{1}{b}\right)\right].\frac{ab}{\left(a+b\right)^2}\)

\(=\left(\frac{1}{a}+\frac{1}{b}\right)^2.\frac{ab}{\left(a+b\right)^2}\)

\(=\frac{1}{ab}\)

\(B=\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{4x^2-y^2}+\frac{1}{\left(2x+y\right)^2}\right].\frac{4x^2+14xy+y^2}{16x}\)

\(=\frac{\left(2x+y\right)^2+2\left(2x+y\right)\left(2x-y\right)+\left(2x-y\right)^2}{\left(2x+y\right)^2.\left(2x-y\right)^2}.\frac{\left(2x+y\right)^2}{16x}\)

\(=\frac{\left(2x+y+2x-y\right)^2}{\left(2x+y\right)^2.\left(2x-y\right)^2}.\frac{\left(2x+y\right)^2}{16x}\)

\(=\frac{x}{\left(2x-y\right)^2}\)

29 tháng 2 2020

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}.\left(\frac{1}{a}+\frac{1}{b}\right)\right].\frac{ab}{\left(a+b\right)^2}\)

ĐK: a, b khác 0, a khác -b

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}.\left(\frac{a+b}{ab}\right)\right].\frac{ab}{\left(a+b\right)^2}\)

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}\right].\frac{ab}{\left(a+b\right)^2}=\left(\frac{1}{a}+\frac{1}{b}\right)^2.\frac{ab}{\left(a+b\right)^2}\)

\(A=\frac{\left(a+b\right)^2}{ab}.\frac{ab}{\left(a+b\right)^2}=1\)

 \(B=\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{\left(4x^2-y^2\right)}+\frac{1}{\left(2x+y\right)^2}\right].\frac{4x^2+4xy+y^2}{16xy}\)

ĐK: xy khác 0, y  \(\ne\pm\)2x

\(B=\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{\left(2x-y\right).\left(2x+y\right)}+\frac{1}{\left(2x+y\right)^2}\right].\frac{\left(2x+y\right)^2}{16xy}\)

\(B=\left[\frac{1}{\left(2x-y\right)}+\frac{1}{\left(2x+y\right)}\right]^2.\frac{\left(2x+y\right)^2}{16xy}\)

\(B=\left(\frac{2x+y+2x-y}{\left(2x-y\right).\left(2x+y\right)}\right)^2.\frac{\left(2x+y\right)^2}{16xy}\)

\(B=\frac{16x^2}{\left(2x-y\right)^2.\left(2x+y\right)^2}.\frac{\left(2x+y\right)^2}{16xy}\)

\(B=\frac{x}{\left(2x-y\right)^2.y}\)

29 tháng 2 2020

Ta thấy \(1+x+x^2=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow1+x+x^2+x^3>x^3\)

\(+,\left(x+2\right)^2-\left(1+x+x^2+x^3\right)=x^2+3.x^2.2+3.x.4+8-1-x-x^2-x^3\)

\(=5x^2+11x+7=5\left(x^2+2.\frac{11}{10}x+\frac{121}{100}\right)+\frac{19}{20}=5.\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\)

\(\Rightarrow\left(x+2\right)^2>1+x+x^2+x^3\)

\(\Rightarrow x^3< 1+x+x^2+x^3< \left(x+2\right)^3\)

Vậy \(1+x+x^2+x^3=\left(x+1\right)^3\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\left(tm\right)\)

Với x=-1 => y=0

      x=0   =>y=1 

(thay vào là đc nha)

Vậy ....

29 tháng 2 2020

Bước 2 là sao cậu

\(1+x+x^2+x^3\)>\(x^3\)+.....(chỗ này mik k hiểu lắm)

29 tháng 2 2020

làm hộ tớ với

29 tháng 2 2020

\(ĐKXĐ:x\ne\frac{-1}{2};x\ne-1\)

\(pt\Leftrightarrow\frac{x^2-5x+1}{2x+1}+\frac{x^2-4x+1}{x+1}=-2\)

\(\Leftrightarrow\frac{\left(x^2-5x+1\right)\left(x+1\right)+\left(2x+1\right)\left(x^2-4x+1\right)}{\left(2x+1\right)\left(x+1\right)}=-2\)

\(\Leftrightarrow\frac{x^3-4x^2-4x+1+2x^3-7x^2-2x+1}{2x^2+3x+1}=-2\)

\(\Leftrightarrow\frac{3x^3-11x^2-6x+2}{2x^2+3x+1}=-2\)

\(\Leftrightarrow3x^3-11x^2-6x+2=-4x^2-6x-2\)

\(\Leftrightarrow3x^3-7x^2+4=0\)

Tính được: \(\Delta=b^2-3ac\)

\(m=\frac{9abc-2b^3-27a^2d}{2\sqrt{\left|\Delta\right|^3}}\)rồi thay vào giải pt bậc ba như thường

18 tháng 4 2020

tách:

\(\frac{\left(t-x\right)\left(t-y\right)}{\left(t-a\right)\left(t-b\right)\left(t-c\right)}=\frac{A}{t-a}+\frac{B}{t-b}+\frac{C}{t-c}\left(1\right)\)

khi đó:

\(\left(t-x\right)\left(t-y\right)=A\left(t-b\right)\left(t-c\right)+B\left(t-c\right)\left(t-a\right)+C\left(t-a\right)\left(t-b\right)\)

Cho t=a; t=b; t=c

=> \(A=\frac{\left(a-x\right)\left(a-y\right)}{\left(a-b\right)\left(a-c\right)};B=\frac{\left(b-x\right)\left(b-y\right)}{\left(b-c\right)\left(b-a\right)};C=\frac{\left(c-x\right)\left(c-y\right)}{\left(c-a\right)\left(c-b\right)}\)

trong đẳng thức (1) ta cho t=0 ta được \(P=\frac{xy}{abc}\)

29 tháng 2 2020

Ta xét hiệu :

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ac+a^2}\right)\)

\(=a-b+b-c+c-a=0\)

Do đó : \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ac+a^2}=1006\)

Khi đó \(M=2\cdot1006=2012\)

29 tháng 2 2020

Chỉ ra được : \(M=2\cdot1006=2012\)

Gợi ý : Xét hiệu .