K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Xét dấu các biểu thức sau:a) f(x)= 2x2+5x+2         b) f(x)= 4x2-3x-1      c) f(x)= -3x2+5x+1        d) f(x)= 3x2+5x+1             e) f(x)= 3x2-2x+1              f) f(x)= -4x2+12x-9g) f(x)= x2-4x-5             h) f(x)= \(\frac{1}{2}x^2+3x+6\)i) f(x)= -2x2-5x+7           j) f(x)= x2-1Bài 2: Viết PTTQ của các đường thẳng đi qua điểm M và có hệ số góc k:a) M ( -3;1) , k= -2     b) M ( -3;4) , k= 3Bài 3: Viết...
Đọc tiếp

Bài 1: Xét dấu các biểu thức sau:

a) f(x)= 2x2+5x+2         b) f(x)= 4x2-3x-1      c) f(x)= -3x2+5x+1        d) f(x)= 3x2+5x+1             e) f(x)= 3x2-2x+1              f) f(x)= -4x2+12x-9

g) f(x)= x2-4x-5             h) f(x)= \(\frac{1}{2}x^2+3x+6\)

i) f(x)= -2x2-5x+7           j) f(x)= x2-1

Bài 2: Viết PTTQ của các đường thẳng đi qua điểm M và có hệ số góc k:
a) M ( -3;1) , k= -2     b) M ( -3;4) , k= 3
Bài 3: Viết PTTS của các đường thẳng đi qua điểm M và vuông góc với
đường thẳng d:

a) M (2;-3) , d: \(\hept{\begin{cases}x=1-2t\\y=3+4t\end{cases}}\)

b) M (0;-2) , d: 3x+2y+1

Bài 4: Cho tam giác ABC có A(2; 0), B( 2; -3), C( 0; -1)
a) Viết PTTQ các cạnh của tam giác ABC.
b) Viết PTTQ của đường thẳng đi qua điểm A và song song với đường
thẳng BC.
c) Viết PTTS của đường thẳng đi qua điểm B và vuông góc với đường
thẳng AC.
d) Viết PTTS của đường trung tuyến AM.
e) Viết PTTQ của đường cao AH.

giai giup cần gâp

 

                                      

2
4 tháng 5 2020

hello bạn hiến

đừng đăng linh tinh nha bạn

3 tháng 5 2020

\(\sqrt{x^2+4x+3m+1}=x+3\)

\(\Leftrightarrow x^2+4x+3m+1=\left(x+3\right)^2\)

\(\Leftrightarrow x^2+4x+3m+1=x^2+6x+9\)

\(\Leftrightarrow2x=3m-8\)

\(\Leftrightarrow x=\frac{3m-8}{2}\)

Với x=\(\frac{3m-8}{2}\Rightarrow\left(\frac{3m-8}{2}\right)^2+4\cdot\frac{3m-8}{2}+3m+1\ge0\)

\(\Leftrightarrow\frac{9m^2-48m+64}{4}+6m-16+3m+1\ge0\)

\(\Leftrightarrow9m^2-12m+4\ge0\)

\(\Leftrightarrow\left(3m-2\right)^2\ge0\)(luôn đúng)

Dấu "=" xảy ra <=> \(3m-2=0\Leftrightarrow m=\frac{2}{3}\)

\(\Rightarrow a=2;b=3\)

\(\Rightarrow4a^2+3b^2+7=4\cdot2^2+3\cdot3^2+7=50\)

2 tháng 5 2020

Sử dụng BĐT Cauchy-Schwarz ta có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\)

Ta sẽ chứng minh \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{9}{a+b+c}\Leftrightarrow\frac{9}{a+b+c}\le\frac{3}{ab+bc+ca}+2\)

Đặt a+b+c=t ta cần chứng minh \(\frac{6}{t^2-3}+2\ge\frac{9}{t}\Leftrightarrow\left(t+3\right)\left(t-3\right)^2\ge0\)

Dấu "=" xảy ra <=> a=b=c=1

2 tháng 5 2020

Ok thanks, mặc dù ngay chỗ cuối đúng thì phải là (2t+3)(t-3)>= 0
Nhưng hiểu rồi là OK :)

ko biết

1 tháng 5 2020

ko biết thua

1 tháng 5 2020

Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)

Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0

Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)

Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)

Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)

Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)

Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH

Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM

Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)

Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)

Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)

30 tháng 4 2020

Lần sau em đăng vào học 24 nhé!

Hướng dẫn: 

Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C 

A ( a; 3 - a); C ( c: -2c -1 ) 

Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)

=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM

=> tìm đc tọa độ B theo a và c

Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c

Lại có: AB vuông CH => Thêm 1 phương trình theo a và c 

=> Tìm đc a, c => 3 đỉnh

30 tháng 4 2020

\(2xyz\le x^2+y^2z^2\)

<=> \(\left(x-yz\right)^2\ge0\) đúng với mọi x; y; z 

Vậy \(2xyz\le x^2+y^2z^2\) với mọi x; y ; z

30 tháng 4 2020

Với mọi x,y,z ta luôn có 

(x-yz)^2>=0 <=> đpcm