Phân tích đa thức sau thành nhân tử
x^3+4x^2-19x+24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Số tiền chiếc áo khoác đó được giảm giá là:
\(500000\div100\times25=125000\left(đồng\right)\)
Số tiền chiếc áo khoác sau khi hạ giá là:
\(500000-125000=375000\left(đồng\right)\)
Đáp số: \(375000\left(đồng\right)\)
2)
70% của số đó là 630. Vậy số đó là:
\(630\div70\times100=900\)
Đáp số: \(900\)
Lời giải:
$12A=1.5.12+5.9.(13-1)+9.13(17-5)+13.17(21-9)+....+77.81(85-73)+81.85(89-77)$
$=60+(5.9.13+9.13.17+13.17.21+...+77.81.85+81.85.89)-(1.5.9+5.9.13+9.13.17+...+73.77.81+77.81.85)$
$=60+81.85.89 - 1.5.9=612780$
A = 1.5 + 5.9 + 9.13 + ... + 81.85
A = \(\dfrac{12}{12}\)(1.5 + 5.9 + 9.13 + 81.85)
A = \(\dfrac{1}{12}\).(1.5.12 + 5.9.12.+ 9.13.12 + ...+ 81.85.12]
A = \(\dfrac{1}{12}\).[1.5.(9 + 3) + 5.9.(13 - 1) + 9.13.(17 - 5) +...+ 81.85.(89 - 77)]
A = \(\dfrac{1}{12}\).[1.5.9 + 1.3.5 + 5.9.13 - 5.9.1 + 9.13.17 - 9.13.5 + ...+ 81.85.89 - 81.85.77]
A = \(\dfrac{1}{12}\).[1.3.5 + 81.85.89]
A = \(\dfrac{1}{12}\).[15 + 612765]
A = \(\dfrac{1}{12}\).612780
A = 51065
Bạn cần hỗ trợ bài nào bạn nên ghi chú rõ bài đó ra nhé.
Bài 1:
a; Các số nguyên đã cho được sắp xếp theo thứ tự tăng dần là:
-2024; - 199; -99; -1; 10; 12; 2023
b; Các số nguyên thỏa mãn đề bài là:
-7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5
Tổng các số nguyên thỏa mãn đề bài là:
-7 + (-6) + (-5) + (-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4 + 5
= - (7 + 6) + [(-5) + 5] + [(-4)+ 4] + [(-3) + 3]+ [(-2) + 2]+[(-1) + 1] + 0
= -13 + 0 + 0 +...+ 0
= - 13
Đề dài quá. Bạn cần hỗ trợ nhiều câu thì nên tách lẻ 1-> 2 bài 1 post để mọi người hỗ trợ nhanh hơn nhé.
Ta có \(a^n-a^{n-4}=a^{n-4}\left(a^4-1\right)=N\)
Ta thấy vì \(a^{n-4}\) và \(a^4-1\) không cùng tính chẵn lẻ nên \(N⋮2\)
Mặt khác, ta thấy nếu \(a⋮3\) thì hiển nhiên \(N⋮3\). Nếu \(a⋮̸3\) thì \(a^2\) chia 3 dư 1 (tính chất số chính phương), dẫn tới \(a^4=\left(a^2\right)^2\) chỉ có thể chia 3 dư 1 hay \(a^4-1⋮3\) với mọi \(a⋮̸3\). Vậy \(N⋮3\)
Ta cần chứng minh \(N⋮5\).
Dễ thấy điều này đúng nếu \(a⋮5\)
Với \(a⋮̸5\), khi đó \(a^2\) chia 5 dư 1 hoặc 4 (tính chất của số chính phương), suy ra \(a^4=\left(a^2\right)^2\) chia 5 chỉ có thể dư 1 (cũng là tính chất của số chính phương). Dẫn đến \(a^4-1⋮5\) với mọi \(a⋮̸5\). Vậy \(N⋮5\).
Do đó \(N⋮2.3.5=30\) (đpcm)
a; \(x\) + 6 ⋮ \(x\) + 1 (\(x\) ≠ - 1)
\(x\) + 1 + 5 ⋮ \(x\) + 1
\(x\) + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
\(x\) \(\in\) {-6; -2; 0; 4}
\(x\) + 6 ⋮ \(x\) + (-1) (\(x\) ≠ 1)
\(x\) + - 1 + 7 ⋮ \(x\) - 1
7 ⋮ \(x\) - 1
\(x\) - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
\(x\) \(\in\) {-6; 0; 2; 8}
b; \(x\) + 6 ⋮ \(x\) - 2 (đk \(x\) ≠ 2)
\(x\) - 2 + 8 ⋮ \(x\) - 2
8 ⋮ \(x\) - 2
\(x\) - 2 \(\in\) Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
\(x\) \(\in\) {-6; -2; 0; 1; 3; 4; 10}
\(x\) + 6 ⋮ \(x\) + (-2)
\(x\) + 6 ⋮ \(x\) - 2
giống với ý trên
Số tuổi của con hiện nay là:
\(48-30=18\) ( tuổi )
Vậy...
\(#Nulc`\)
Đa thức đã cho không phân tích thành nhân tử được
*Đoán nghiệm sử dụng tính chất của đa thức:
Ta dễ dàng nhận thấy đa thức \(P\left(x\right)=x^3+4x^2-19x+24\) không có nghiệm là \(\pm1\).
Giả sử \(P\left(x\right)\) có nghiệm hữu tỉ dạng \(\dfrac{p}{q}\left(p,q\inℤ\right)\), không mất tổng quát giả sử \(q>0\). Khi đó \(p|24\), \(q|1\) \(\Rightarrow q=1\).
Khi đó do \(P\left(x\right)\) không có nghiệm là \(\pm1\) nên \(p\in\left\{\pm2,\pm3,\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)
Thử lại, ta thấy không có số \(p\) nào thỏa mãn \(\dfrac{p}{q}\) là nghiệm của P(x). Vậy đa thức \(P\left(x\right)\) không có nghiệm hữu tỉ \(\Rightarrow\) \(P\left(x\right)\) không thể phân tích thành nhân tử.
* Chú ý rằng chỉ khi \(degP\left(x\right)\le3\) hoặc \(degP\left(x\right)⋮̸2\) thì từ P(x) không có nghiệm hữu tỉ mới suy ra được P(x) không phân tích được thành nhân tử nhé. Nếu \(\left\{{}\begin{matrix}degP\left(x\right)\ge4\\degP\left(x\right)⋮2\end{matrix}\right.\) thì chưa chắc điều này đã đúng. VD: Đa thức \(Q\left(x\right)=x^4+4\) không có nghiệm hữu tỉ (nó thậm chí còn không có nghiệm thực) nhưng ta vẫn có thể phân tích thành nhân tử như sau:
\(Q\left(x\right)=x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)