Tìm điều kiện xác định và phân tích các đa thức sau thành nhân tử:
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(C=\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(D=\sqrt{x^2+3x+2}+\sqrt{x+1}+2\sqrt{x+2}+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H AB=6cm BH=3cm AH, AC, HC=?
Xét ▲ ABH vuông tại H :
ADĐL pi- ta - go ta có:
AB2 = AH2 + BH2
=> AH2 = AB2 - BH2
AH2 = 62 - 32
AH2 = 27
AH = \(\sqrt{27}\)
AC , HC bn tự tính nốt nhé....
a, \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\frac{\sqrt{x-1}}{\sqrt{64}}=-17\)
\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+\frac{24\sqrt{x-1}}{8}=-17\)
\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Rightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)
\(\Rightarrow\sqrt{x-1}.-1=-17\)
\(\Rightarrow\sqrt{x-1}=17\)
\(\Rightarrow x-1=289\)
\(\Rightarrow x=290\)
b, \(3x-7\sqrt{x}+4=0\)
\(\Rightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Rightarrow3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)
\(\Rightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}\sqrt{x}=1\\3\sqrt{x}=4\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}}}\)
c, \(-5x+7\sqrt{x}+12=0\)
\(\Rightarrow-5x-5\sqrt{x}+12\sqrt{x}+12=0\)
\(\Rightarrow-5\sqrt{x}\left(\sqrt{x}+1\right)+12\left(x+1\right)=0\)
\(\Rightarrow\left(\sqrt{x}+1\right)\left(-5\sqrt{x}+12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\-5\sqrt{x}+12=0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}=-1VN\\-5\sqrt{x}=-12\end{cases}}\Rightarrow\orbr{\begin{cases}\\\sqrt{x}=\frac{12}{5}\end{cases}\Rightarrow}\orbr{\begin{cases}\\x=\frac{144}{25}\end{cases}}}\)
1) ĐK: \(x-1\ge0\Leftrightarrow x\ge1\)
pt \(\Leftrightarrow\frac{1}{2}\sqrt{x-1}-\frac{3}{2}.3\sqrt{x-1}+\frac{24}{8}\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=17^2=289\Leftrightarrow x=290\left(tm\right)\)
b) \(3x-7\sqrt{x}+4=0\)
ĐK: \(x\ge0\)
Đặt \(\sqrt{x}=t\left(t\ge0\right)\Leftrightarrow t^2=x\)
Ta có phương trình ẩn t:
\(3t^2-7t+4=0\)( giải đen ta)
\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=\frac{4}{3}\end{cases}}\)
Với t=1 ta có: \(\sqrt{x}=1\Leftrightarrow x=1\) (tm)
Với t=4/3 ta có: \(\sqrt{x}=\frac{4}{3}\Leftrightarrow x=\frac{16}{9}\) (tm)
Câu c em làm tương tự câu b nhé!
a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)
b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)
a) Ta có:
5√15+12√20+√5515+1220+5
=√52.15+√(12)2.20+√5=√25.15+√14.20+√5=√255+√204+√5=√5+√5+√5=(1+1+1)√5=3√5=52.15+(12)2.20+5=25.15+14.20+5=255+204+5=5+5+5=(1+1+1)5=35
b) Ta có:
√12+√4,5+√12,512+4,5+12,5
=√12+√92+√252=√12+√9.12+√25.12=√12+√32.12+√52.12=√12+3√12+5√12=(1+3+5).√12=9√12=91√2=9.√22=9√22=12+92+252=12+9.12+25.12=12+32.12+52.12=12+312+512=(1+3+5).12=912=912=9.22=922
c) Ta có:
√20−√45+3√18+√72=√4.5−√9.5+3√9.2+√36.2=√22.5−√32.5+3√32.2+√62.2=2√5−3√5+3.3√2+6√2=2√5−3√5+9√2+6√2=(2√5−3√5)+(9√2+6√2)=(2−3)√5+(9+6)√2=−√5+15√2=15√2−√520−45+318+72=4.5−9.5+39.2+36.2=22.5−32.5+332.2+62.2=25−35+3.32+62=25−35+92+62=(25−35)+(92+62)=(2−3)5+(9+6)2=−5+152=152−5
d) Ta có:
0,1√200+2√0,08+0,4.√50=0,1√100.2+2√0,04.2+0,4√25.2=0,1√102.2+2√0,22.2+0,4√52.2=0,1.10√2+2.0,2√2+0,4.5√2=1√2+0,4√2+2√2=(1+0,4+2)√2=3,4√2
\(x^2+5x+1=\left(x+5\right)\sqrt{x^2+1}\)
<=> \(\left(x+5\right)\left(x-\sqrt{x^2+1}\right)=-1\)
Nhân liên hợp ta có
\(x+5=x+\sqrt{x^2+1}\)
=> \(x^2+1=25\)
=> \(x=\pm2\sqrt{6}\)
Vậy \(x=\pm2\sqrt{6}\)
P=(√x+3√x+2+4x√x+3x+9x−√x−6):(√x√x+3+2√x+3x+5√x+6)
=[(√x+3)(√x−3)(√x+2)(√x−3)+4x√x+3x+9(√x+2)(√x−3)]:[√x(√x+2)(√x+3)(√x+2)+2√x+3(√x+3)(√x+2)]
=x−9+4x√x+3x+9(√x+2)(√x−3):x+2√x+2√x+3(√x+3)(√x+2)
=4x√x+4x(√x+2)(√x−3)⋅(√x+3)(√x+2)(√x+1)(√x+3)
=4x(√x+1)(√x−3)(√x+1)=4x√x−3
b/ P=48⇔4x√x−3=48
⇔4x=48√x−144
⇔4x−48√x+144=0
⇔(2√x−12)2=0
⇔2√x−12=0⇔√x=6⇔x=36(TM)
Vậy................
a, \(A=\left(\frac{x}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+\sqrt{x}}\)Đkxđ: \(x\ne0\)
\(=\left(\frac{x\left(\sqrt{x}+1\right)+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x\sqrt{x}+x+x}{\sqrt{x}\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\frac{x\left(\sqrt{x}+2\right)}{\sqrt{x}}=\sqrt{x}\left(\sqrt{x}+2\right)\)
b, \(A=\frac{13}{3}\Rightarrow\sqrt{x}\left(\sqrt{x}+2\right)=\frac{13}{3}\)
\(x+2\sqrt{x}=\frac{13}{3}\)
\(x+2\sqrt{x}-\frac{13}{3}=0\)
\(x+2\sqrt{x}.1+1^2-1^2-\frac{13}{3}=0\)
\(\left(x+1\right)^2-\frac{16}{3}=0\)
\(\left(x+1\right)^2=\frac{16}{3}\)
\(x+1=\sqrt{\frac{16}{3}}\)
\(x+1=\frac{4\sqrt{3}}{3}\)
\(x=\frac{4\sqrt{3}}{3}-1\)
\(x=\frac{-3+4\sqrt{3}}{3}\)
\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{x^2-2x+1}{2}\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}+1\right)}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=\frac{-\sqrt{x}\left(\sqrt{x}-1\right)}{1}=-\sqrt{x}\left(\sqrt{x}-1\right)\)
\(A,ĐKXĐ:x;y\ge0\)
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)
\(ĐKXĐ:x;y\ge0\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)