Bài toán :
Cho a, b \(\ge\)1
Cmr : 1/a2+1 + 1/b2+1 \(\ge\)2/1+ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{x}+1}{x-1}-\frac{x+2}{x\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)\(-\frac{x-2}{\sqrt{x}^3-1}\)\(-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{1}{\sqrt{x}-1}\)\(-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)\(-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{x+\sqrt{x}+1-x+2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{2}{\sqrt{x}^3-1}\)
\(A=\left(1+\frac{\sqrt{a}}{a+1}\right):\)\(\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
\(=\left(1+\frac{\sqrt{a}}{a+1}\right):\)\(\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\sqrt{a}\left(a+1\right)-\left(a+1\right)}\right)\)
\(=\left(1+\frac{\sqrt{a}}{a+1}\right):\)\(\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\left(1+\frac{\sqrt{a}}{a+1}\right):\)\(\left(\frac{a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\left(\frac{a+\sqrt{a}+1}{a+1}\right):\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{\left(a+\sqrt{a}+1\right)\left(a+1\right)\left(\sqrt{a}-1\right)}{\left(a+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(a+\sqrt{a}+1\right)}{a+1}\)
= ( 7\(\sqrt{16\cdot3}\)+3\(\sqrt{9\cdot3}\)-3\(\sqrt{4\cdot3}\)) /\(\sqrt{3}\)
=(49\(\sqrt{3}\)+ 9\(\sqrt{3}\)-6 \(\sqrt{3}\)) /\(\sqrt{3}\)
=52
G A B C N M E F
a) Gọi F' là giao điểm của AE và BC
MN//BC => \(\frac{MN}{BC}=\frac{AN}{AC}\)
NE//F'C => \(\frac{EN}{FC}=\frac{AN}{AC}\)
=> \(\frac{EN}{F'C}=\frac{MN}{BC}=\frac{2EN}{2FC}=\frac{EN}{FC}\Rightarrow F'C=FC\)
mà F', F cùn thuộc cạnh BC
=> F' trùng F
=> A, E, F thẳng hàng
b) Xét tam giác BNC có: Flaf trung điểm BC; G là trung điểm BN
=> FG là đường trung bình tam giác BNC
=> FG//=1/2 NC
=> FG=9:2=4,5 cm
Xét tam giác BNM tương tự
có: EG//=1/2 BM
=> EG=12:2=6 cm
Ta lại có: EG//BM => EG//AB
FG //NC => FG//AC
Mà AB vuông AC
=> EG vuông FG
=> Tam giác EGF vuông tại G có: FG=4,5 cm và EG=6 cm
Áp dụng định lí pitago:
=> \(EF^2=GE^2+GF^2=4,5^2+6^2=7,5^2\)
=> EF=7,5
\(\widehat{EGF}=90^o\)
\(\cos\widehat{GEF}=\frac{GE}{EF}=\frac{6}{7,5}=\frac{4}{5}\Rightarrow\widehat{GEF}=arcos\frac{4}{5}\)
\(\cos\widehat{GFE}=\frac{GF}{EF}=\frac{4,5}{7,5}=\frac{3}{5}\Rightarrow\widehat{GFE}=arcos\frac{3}{5}\)
c) Ta có: MN//BC
=> \(\frac{BM}{AB}=\frac{CN}{AC}\Rightarrow\frac{AB}{AC}=\frac{BM}{CN}=\frac{2GE}{2GF}=\frac{GE}{GF}\)
Xét tam giác vuông GEF và tam giác vuông ABC
có: \(\frac{AB}{AC}=\frac{GE}{GF}\)
=> tam giác GEF đồng dạng với tam giác ABC
Câu trên mình thấy sai sai vì nếu x càng lớn thì A càng nhỏ , bạn xem lại đề nhé
Câu 2
\(\frac{3}{2}x+\frac{6}{x}\ge6\); \(\frac{1}{2}y+\frac{8}{y}\ge4\)
\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
Cộng các bĐT trên
=> \(3x+2y+\frac{6}{x}+\frac{8}{y}\ge9+6+4=19\)
MinP=19 khi x=2;y=4
\(3,\)Áp dụng bđt Mincopski \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)hai lần có
\(VT\ge\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{yz}+\sqrt{zx}\right)^2}+\sqrt{z+xy}\)
\(\ge\sqrt{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)
\(=\sqrt{x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)
\(=\sqrt{1+2t+t^2}\left(t=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(=\sqrt{\left(t+1\right)^2}=t+1=VP\left(Đpcm\right)\)
\(2,\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{a}.\sqrt{b}}}=\sqrt{\sqrt{ab}}\left(đpcm\right)\)
Cho \(a=\frac{x+1}{x}\); \(b=\frac{y+1}{y}\); \(c=\frac{z+1}{z}\)và \(z=xy\)
Tính \(a^2+b^2+c^2-abc\)
Điều kiện xác định \(\sqrt{8x-x^2-15}\)là \(8x-x^2-15\ge0\)
\(\Leftrightarrow\left(-x^2+3x\right)+\left(5x-15\right)\ge0\)
\(\Leftrightarrow-x\left(x-3\right)+5\left(x-3\right)\ge0\)
\(\Leftrightarrow\left(-x+5\right)\left(x-3\right)\ge0\)
Đặt f(x)= \(\left(-x+5\right)\left(x-3\right)\)
f(x)=0 \(\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)
Ta có bảng xét dấu:
x 3 5
x-3 - 0 + | +
-x+5 - | - 0 +
f(x) + 0 - 0 +
Để f(x) \(\ge0\Leftrightarrow\)\(\orbr{\begin{cases}x\le3\\x\ge5\end{cases}}\)
Vậy điều kiện xác định \(\sqrt{8x-x^2-15}\)là \(\orbr{\begin{cases}x\le3\\x\ge5\end{cases}}\)
Chuyển vế qua bn biến đổi tương đương đc
\(\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(xy+1\right)\left(x^2+1\right)\left(y^2+1\right)}\ge0\)(đúng)