Rút gọn biểu thức :\(\frac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2+\frac{x^2}{\left(x+1\right)^2}-2\frac{x^2}{x+1}+2\frac{x^2}{x+1}-1=0\)
\(\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2+2\frac{x^2}{x+1}-1=0\)
\(\Leftrightarrow\left(\frac{x^2}{x+1}\right)^2+2\frac{x^2}{x+1}-1=0\)
Ta có: \(2021^2=\left(2020+1\right)^2=2020^2+2.2020.1+1^2\)
\(\Rightarrow1+2020^2=2021^2-2.2020\)
\(\Rightarrow\sqrt{1+2020^2+\frac{2020^2}{2021}}+\frac{2020}{2021}\)
\(=\sqrt{2021^2-2.2020+\frac{2020^2}{2021}}+\frac{2020}{2021}\)
\(=\sqrt{2021^2-2.2021.\frac{2020}{2021}+\left(\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)
\(=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)
\(=2021-\frac{2020}{2021}+\frac{2020}{2021}=2021\)
Đặt : \(x=\frac{1}{a};y=\frac{2}{b};z=\frac{3}{c}\)
Khi đó điều kiện bài toán thành : \(2xyz\ge2x+4y+7z\)
và \(E=x+y+z\)
\(\Rightarrow z\left(2xy-7\right)\ge2x+4y\)
\(\Leftrightarrow2xy>7\)và \(z\ge\frac{2x+4y}{2xy-7}\)
Ta có : \(\left(x+y+z\right)\ge x+y+\frac{2x+4y}{2xy-7}\)
\(\Leftrightarrow\left(x+y+z\right)\ge x+\frac{11}{2x}+y-\frac{7}{2x}+\frac{2x+\frac{14}{x}}{2xy-7}\)
mà \(2\sqrt{1+\frac{7}{x^2}}\ge\frac{3+\frac{7}{x}}{2}\)
\(\Rightarrow x+y+z\ge\frac{3}{2}+x+\frac{9}{2}\ge\frac{15}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{3};b=\frac{4}{5};c=\frac{3}{2}\left(x=3;y=\frac{5}{2};z=2\right)\)
_Hắc phong_
Đặt \(x=\frac{1}{a};y=\frac{2}{b};z=\frac{3}{c}\)
Khi đó ta được điều kiện : \(2xyz\ge2x+4y+7z\)
Áp dụng bất ẳng thức AM-GM ta thấy rằng :
\(x+y+z=\frac{1}{15}.\left(\frac{5}{2}x+\frac{5}{2}x+....+\frac{5}{2}x+3y+3y+.....+3y+\frac{15}{4}z+\frac{15}{4}z+...+\frac{15}{4}z\right)\)
(6 số \(\frac{5}{2}x\)) (5 số\(3y\)) (4 số\(\frac{15}{4}z\))
\(\ge\left(\frac{5x}{2}\right)^{\frac{2}{5}}\left(3y\right)^{\frac{1}{3}}\left(\frac{15z}{4}\right)^{\frac{4}{15}}\)
Và cũng có :
\(2x+4x+7z=\frac{1}{15}\left(10x+...+10x+12y+...+12y+15z+..+15z\right)\)
(3 số\(10x\)) (5 số\(12y\)) (7 số\(15z\))
\(\ge10^{\frac{1}{5}}.12^{\frac{1}{3}}.15^{\frac{7}{15}}.x^{\frac{1}{5}}.y^{\frac{1}{3}}.z^{\frac{7}{15}}\)
Điều này có nghĩa là :
\(\left(x+y+z\right)^2\left(2x+4y+7z\right)\ge\frac{225}{2}xyz\)
Vì \(2xyz\ge2x+4y+7z\)nên ta có :
\(\left(x+y+z\right)^2\ge\frac{225}{4}\Rightarrow x+y+z\ge\frac{15}{2}\)
Dấu"="xảy ra kh\(x=2;y=\frac{5}{2};=2\)
Từ đó suy ra
\(a=\frac{1}{3};b=\frac{4}{5};c=\frac{3}{2}\)
P/s : \(min_E=\frac{15}{2}\)
_Minh ngụy_
(=) \(\frac{2x-3}{x-1}\)=4
(=) 2x-3=4x -4
(=) -2x = -1
(=) x = \(\frac{1}{2}\)
\(\sqrt{\frac{2x-3}{x-1}}=2\)( điều kiện :......)
\(\Leftrightarrow\left(\sqrt{\frac{2x-3}{x-1}}\right)^2=2^2\)
\(\Leftrightarrow\frac{2x-3}{x-1}=4\)
\(\Leftrightarrow2x-3=4\left(x-1\right)\)
\(\Leftrightarrow2x-3=4x-4\)
\(\Leftrightarrow4x-2x=-3+4\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)( đối chiếu điều kiện )
Kết luận :.......
_Hắc phong_
\(\frac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}=\frac{\sqrt{2}\sqrt{8-\sqrt{15}}}{\sqrt{2}\left(\sqrt{15}.\sqrt{2}-\sqrt{2}\right)}=\frac{\sqrt{16-2\sqrt{15}}}{\sqrt{2}.\sqrt{2}\left(\sqrt{15}-1\right)}\)
\(=\frac{\sqrt{15-2\sqrt{15}+1}}{2\left(\sqrt{15}-1\right)}=\frac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2\left(\sqrt{15}-1\right)}=\frac{\sqrt{15}-1}{2\left(\sqrt{15}-1\right)}=\frac{1}{2}\)