K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

Ta có : 2x = 3y =>\(\frac{x}{3}=\frac{y}{2}\)=>\(\frac{x}{6}=\frac{y}{4}\)(1)

            2y = 4z =>\(\frac{y}{4}=\frac{z}{2}\)(2)

Từ (1) và (2) suy ra : \(\frac{x}{6}=\frac{y}{4}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{2}=\frac{3x}{18}=\frac{2z}{4}=\frac{3x-2z}{18-4}=\frac{10}{14}=\frac{5}{7}\)

Từ\(\frac{x}{6}=\frac{5}{7}\)=> \(x=\frac{30}{7}\)

    \(\frac{y}{4}=\frac{5}{7}\)=> \(y=\frac{20}{7}\)

     \(\frac{z}{2}=\frac{5}{7}\)=> \(z=\frac{10}{7}\)

Vậy \(x=\frac{30}{7}\)\(y=\frac{20}{7}\)và \(z=\frac{10}{7}\)

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\\\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\\\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\end{cases}}\)

a: Xét ΔAHB vuông tại H và ΔDHB vuông tại H có

BH chung

HA=HD

Do đó: ΔAHB=ΔDHB

b: Ta co: ΔAHB=ΔDHB

nên góc ABH=góc DBH

=>BH là phân giác của góc ABD
Ta có: ΔBAD cân tại B

mà BC là đường cao

nên BC là trung trực của AD

c: Xét ΔABC và ΔDBC có

BA=BD

góc ABC=góc DBC

BC chung

Do đó: ΔABC=ΔDBC