K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

\(2.\left(x-4\right).\sqrt{x-2}+\left(x-2\right).\sqrt{x+1}+2x-6=0\)

\(\Leftrightarrow2.\sqrt{x-2}.x-8\sqrt{x-2}+\sqrt{x+1}.x-2\sqrt{x+1}+2x-6=0\)

Đặt x = u, ta có:

\(\Leftrightarrow2u\left(u^2+2\right)-8u+\sqrt{\left(u^2+2\right)+1}.\left(u^2+2\right)-2\sqrt{\left(u^2+2\right)+1}+2\left(u^2+2\right)-6=0\)

\(\Leftrightarrow\hept{\begin{cases}u=1\\u=-\frac{\sqrt{10}-2}{3}\\u=-\sqrt{2}-2\end{cases}}\Leftrightarrow x=3\)

=> x = 3

Không chắc nhé :v

13 tháng 7 2019

ĐK \(x\ge2\)

Pt 

<=> \(2\left(x-4\right)\left(\sqrt{x-2}-1\right)+\left(x-2\right)\left(\sqrt{x+1}-2\right)+6x-18=0\)

<=> \(2\left(x-4\right).\frac{x-3}{\sqrt{x-2}+1}+\left(x-2\right).\frac{x-3}{\sqrt{x+1}+2}+6\left(x-3\right)=0\)

<=> \(\orbr{\begin{cases}x=3\\\frac{2\left(x-4\right)}{\sqrt{x-2}+1}+\frac{x-2}{\sqrt{x+1}+2}+6=0\left(2\right)\end{cases}}\)

Pt (2) \(VT=\frac{2\left(x-2\right)}{\sqrt{x-2}+1}+6-\frac{4}{\sqrt{x-2}+1}+\frac{x-2}{\sqrt{x+1}+2}>0\forall x\ge2\)

=> Pt (2) vô nghiệm

Vậy x=3

13 tháng 7 2019

Xét hiệu \(x^2-x=x\left(x-1\right)\). Chú ý rằng x = 0 và x = 1 làm cho các thừa số x và x - 1 bằng 0.

\(x\ge0\) nên ta xét các trường hợp:

*Nếu 0 < x < 1 thì \(x>0,x-1< 0\), do đó \(x^2-x< 0\)nên \(x^2< x\)

*Nếu x > 1 thì x và x - 1 đều dương, do đó  \(x^2-x>0\)nên \(x^2>x\)

*Còn nếu a = 0 hoặc a = 1 thì \(x^2=x\)

13 tháng 7 2019

\(A=\frac{2}{2-\sqrt{3}}-2\sqrt{3}\)

\(A=2\left(2+\sqrt{3}\right)-2\sqrt{3}\)

A = 4

A = \(\frac{2}{2-\sqrt{3}}\)  - \(2\sqrt{3}\)

\(\frac{2\left(2+\sqrt{3}\right)}{4-3}-2\sqrt{3}\)

= 4 + \(2\sqrt{3}\) - \(2\sqrt{3}\)

=4

#mã mã#

13 tháng 7 2019

\(A=\frac{1}{2-\sqrt{3}}+\frac{1}{2+\sqrt{5}}\)

\(A=\frac{2+\sqrt{5}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{5}\right)}+\frac{2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{5}\right)}\)

\(A=\frac{2+\sqrt{5}+2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{5}\right)}\)

\(A=\frac{4+\sqrt{5}-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{5}\right)}\)

\(A=\sqrt{5}+\sqrt{3}\)

13 tháng 7 2019

\(A=\frac{1}{2-\sqrt{3}}+\frac{1}{2+\sqrt{5}}=\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{\sqrt{5}-2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)

\(=\frac{2+\sqrt{3}}{2^2-\sqrt{3}^2}+\frac{\sqrt{5}-2}{\sqrt{5}^2-2^2}=2+\sqrt{3}+\sqrt{5}-2\)

\(=\sqrt{3}+\sqrt{5}\)

13 tháng 7 2019

TL:

ĐKXĐ:\(\sqrt{x^2-1}>0\) 

\(\Leftrightarrow x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow x>1\) 

Vậy...

13 tháng 7 2019

DKXD :  X > 1

Ta có: \(\frac{1}{x\left(a-b\right)\left(a-c\right)}+\frac{1}{y\left(b-a\right)\left(b-c\right)}+\frac{1}{z\left(c-a\right)\left(c-b\right)}\)

\(=\frac{1}{x\left(a-b\right)\left(a-c\right)}-\frac{1}{y\left(a-b\right)\left(b-c\right)}+\frac{1}{z\left(a-c\right)\left(b-c\right)}\)

\(=\frac{yz\left(b-c\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}-\frac{xz\left(a-c\right)}{yxz\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{xy\left(a-b\right)}{zxy\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\frac{yz\left(b-c\right)-xz\left(a-c\right)+xy\left(a-b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)\(=\frac{yz\left(b-c\right)-xz\left[\left(b-c\right)+\left(a-b\right)\right]+xy\left(a-b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{yz\left(b-c\right)-xz\left(b-c\right)-xz\left(a-b\right)+xy\left(a-b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(b-c\right)z\left(y-x\right)-\left(a-b\right)x\left(z-y\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(b-c\right)z\left(c+a-b-b-c+a\right)-\left(a-b\right)x\left(a+b-c-c-a+b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(b-c\right)z\left(2a-2b\right)-\left(a-b\right)x\left(2b-2c\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(b-c\right)2z\left(a-b\right)-\left(a-b\right)2x\left(b-c\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(a-b\right)\left(b-c\right)\left(2z-2x\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{2\left(z-x\right)}{xyz\left(a-c\right)}=\frac{2\left(a+b-c-b-c+a\right)}{xyz\left(a-c\right)}\)

\(=\frac{2\left(2a-2c\right)}{xyz\left(a-c\right)}=\frac{2.2\left(a-c\right)}{xyz\left(a-c\right)}=\frac{4}{xyz}\Rightarrowđpcm\)

C =  \(\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\)\(\left(\frac{-\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{\sqrt{x}+3}-\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)(  \(x\ge0\) , \(x\ne9;4\))

 =  \(\frac{x-9-x+3\sqrt{x}}{x-9}\)\(\frac{9-x+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(\frac{3\sqrt{x}-9}{x-9}\)\(\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

=  \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(:\frac{\sqrt{x}-2}{\sqrt{x}+3}\)

\(\frac{3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(\frac{3}{\sqrt{x}-2}\)

#mã mã#

13 tháng 7 2019

giải giúp mình bài này ới ạ mình đng cần gấp 

Cho biểu thức 

c=(căng x-2/căng x+2+căng x+2/căng x-2)nhân căng x+2/2 - 4 căng x/căng x-2

13 tháng 7 2019

a)

 \(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{a-9}\)

\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{a-3\sqrt{a}+3+3\sqrt{a}-3a-9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{-2a-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{-2a-3}{a-9}\)

b) Để \(P=\frac{1}{3}\Rightarrow\frac{-2a-3}{a-9}=\frac{1}{3}\)

\(\Rightarrow3\left(-2a-3\right)=a-9\)

\(\Rightarrow-6a-9=a-9\)

\(\Rightarrow-6a-a=-9+9\)

\(\Rightarrow-7a=0\left(L\right)\)

Vậy ko có gt của a để P=1/3 ( mk ko chắc.....)