Cho tam giác ABC vuông tại A,trung tuyến AM = 25cm,tỉ số 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền là \(\frac{16}{9}\).Tính độ dài hai cạnh góc vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk ko bt viết sigma trên đây :'< bn thông cảm
Đặt \(A=\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)
\(=\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{a+c+d}+\frac{a+b+c+d}{a+b+d}+\frac{a+b+c+d}{a+b+c}-4\)
\(=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\right)-4\)
\(\ge\frac{16\left(a+b+c+d\right)}{3\left(a+b+c+d\right)}-4=\frac{16}{3}-4=\frac{4}{3}\)
Đặt \(B=\frac{b+c+d}{a}+\frac{a+c+d}{b}+\frac{a+b+d}{c}+\frac{a+b+c}{d}\)
\(=\frac{a+b+c+d}{a}+\frac{a+b+c+d}{b}+\frac{a+b+c+d}{c}+\frac{a+b+c+d}{d}-4\)
\(=\left(a+b+c+d\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)-4\ge\frac{16\left(a+b+c+d\right)}{a+b+c+d}-4=12\)
\(\Rightarrow\)\(S=A+B\ge\frac{4}{3}+12=\frac{40}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=d\)
\(\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(\frac{1}{y}+y\right)=\frac{9}{2}\\\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=5\end{cases}}\)
dat an phu r giai
\(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}+\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}=\frac{\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}{\left(\sqrt{3+\sqrt{5}}\right)^2}+\frac{\sqrt{\left(3+\sqrt{5}\left(3-\sqrt{5}\right)\right)}}{\left(\sqrt{3-\sqrt{5}}\right)^2}\)
\(=\frac{\sqrt{4}}{3+\sqrt{5}}+\frac{\sqrt{4}}{3-\sqrt{5}}=\frac{2.\left(3-\sqrt{5}\right)+2.\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\frac{12}{4}=3\)
\(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\) + \(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)
= \(\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{9-5}}\)+ \(\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{9-5}}\)
= \(\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{4}}\)+ \(\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{4}}\)
= \(\frac{3-\sqrt{5}}{2}\)+ \(\frac{3+\sqrt{5}}{2}\)
= \(\frac{6}{2}\)
=3
#mã mã#