K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

a) \(pt\Leftrightarrow\frac{6}{x^2+2}-1+\frac{7}{x^2+3}-1+\frac{12}{x^2+8}-1-\frac{3x^2+16}{x^2+10}+2=0\)

\(\Leftrightarrow\frac{4-x^2}{x^2+2}+\frac{4-x^2}{x^2+3}+\frac{4-x^2}{x^2+8}+\frac{4-x^2}{x^2+10}=0\)

\(\Leftrightarrow\left(4-x^2\right)\left(\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+8}+\frac{1}{x^2+10}\right)=0\)

\(\Leftrightarrow4-x^2=0\)(do \(\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+8}+\frac{1}{x^2+10}>0,\forall x\))

\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

\(KL...\)

7 tháng 3 2020

2x(8x - 1)2(4x - 1) = 9

<=> 512x4 - 256x3 + 40x2 - 2x = 9

<=> 512x4 - 256x3 + 40x2 - 2x - 9 = 0

<=> (2x - 1)(4x + 1)(64x4 - 16x + 9) = 0

vì 64x4 - 16x + 9 khác 0 nên:

<=> 2x - 1 = 0 hoặc 4x + 1 = 0

<=> x = 1/2 hoặc x = -1/4

7 tháng 3 2020

 (a+b)^3 - 3ab(a+b)
= (a^3 + 3a^2b + 3ab^2 + b^3) - (3a^2b + 3ab^2) 
= a^3 + 3a^2b + 3ab^2 + b^3 - 3a^2b - 3ab^2 
= a^3 + b^3 (đpcm) 

7 tháng 3 2020

ta có

a3+b3=(a3+3a2b+3ab2+b3)-3a2b-3ab2

=(a+b)3-3ab(a+b) (ĐPCM)

7 tháng 3 2020

Gọi DH và BK lần lượt là khoảng cách từ D và B đến cạnh AC.

Ta có AB = AD + DB

⇒ AB = 13,5 + 4,5 = 18 (cm)

Vì DH // BK (cùng vuông góc với AC) nên áp dụng hệ quả định lí Ta-lét ta có:

Giải bài 9 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy tỉ số khoảng cách từ D và B đến cạnh AC là 3/4

7 tháng 3 2020

Gọi DH và BK lần lượt là khoảng cách từ D và B đến cạnh AC.

Ta có AB = AD + DB

⇒ AB = 13,5 + 4,5 = 18 (cm)

Vì DH // BK (cùng vuông góc với AC) nên áp dụng hệ quả định lí Ta-lét ta có:

Giải bài 9 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy tỉ số khoảng cách từ D và B đến cạnh AC là 3/4

7 tháng 3 2020

ghi lại đề tý

\(B=x^{15}-8x^{14}+8x^{13}-8x^2+...-8x^2+8x-5\)

=> \(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

=>\(B=x^{15}-x^{15}+x^{14}-x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\\\)

=>B=2

7 tháng 3 2020

Từ đề bài, ta suy ra:

\(x^2-x+2009\)

\(=\left(x^2-x+\frac{1}{4}\right)+2008,75\)

\(=\left(x-\frac{1}{2}\right)^2+2008,75\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)nên GTNN của biểu thức là 2008,75

7 tháng 3 2020

\(x^2-x+2019=x^2-x+\frac{1}{4}+\frac{8075}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{8075}{4}\ge\frac{8075}{4}\)

Dấu "=" khi \(x=\frac{1}{2}\)

7 tháng 3 2020

 (x-3).(2x-1)=(2x-1).(2x+3)

<=>  (x-3).(2x-1)-(2x-1).(2x+3)=0

<=> (x-3-2x-3)(2x-1)=0

<=> (-3x-6)(2x-1)=0

<=> -3x-6=0 hoặc 2x-1=0

<=> -3x=6 hoặc 2x=1

<=> x=-2 hoặc x=1/2

Vậy \(x\in\left\{-2;\frac{1}{2}\right\}\)

7 tháng 3 2020

(x - 3)(2x - 1) = (2x - 1)(2x + 3)

<=> (x - 3)(2x - 1) - (2x - 1)(2x + 3) = 0

<=> (2x - 1)(x - 3 - 2x - 3) = 0

<=> (2x - 1)(-x - 6) = 0

<=> \(\orbr{\begin{cases}2x-1=0\\-x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-6\end{cases}}\)

Vậy S = {1/2; -6}

7 tháng 3 2020

Áp dụng bđt cô - si cho 2 số không âm:

\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)

\(b^2+c^2\ge2\sqrt{b^2c^2}=2bc\)

\(c^2+a^2\ge2\sqrt{c^2a^2}=2ca\)

Cộng từng vế của các bđt trên:

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Dấu "=" khi a = b = c

7 tháng 3 2020

xét hiệu 

P=a2+b2+c2-ab-ac-ca( mk đặt cho dễ làm)

2P=2a2+2b2+2c2-2ab-2bc-2ca

2P=(a-b)2+(b-c)2+(c-a)2 lớn hơn bằng 0

=> 2P lớn hơn bằng 0=> P lớn hơn bằng 0

=> a2+b2+c2-ab-bc-ca lớn hơn bằng 0

=> a2+b2+c2>= ab+bc+ca

dấu bằng xảy ra <=> a=b=c

mk làm dạng này chưa quen lắm nên sẽ có chút sai sót

Hok tốt