tìm a để đa thức A=2x^3 +7x^++hết cho đa thức B=x^2 2x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chào em, cảm ơn em đã tham gia nền tảng học trực tuyến olm.vn. Với những bài thực hành như này Olm xin hướng dẫn em làm như sau: Bước 1 em chọn đáp án đúng. Bước 2 em bấm kiểm tra vậy là ok rồi em nhá.
\(B=x\left(x+3y+1\right)-2y\left(x-1\right)-\left(y+x+1\right)x\)
\(B=\left(x^2+3xy+x\right)-\left(2xy-2y\right)-\left(xy+x^2+x\right)\)
\(B=x^2+3xy+x-2xy+2y-xy-x^2-x\)
\(B=\left(x^2-x^2\right)+\left(3xy-2xy-xy\right)+\left(x-x\right)+2y\)
\(B=0+0+0+2y\)
\(B=2y\)
cậu đừng bao h gửi những cái câu ấy vào câu hỏi của người nhác nhé. nếu còn 1 lần nữa mình nhìn thấy cậu gửi thì ngay lập tức cậu sẽ bị khoá tài khoản
`x-x^{2}-1`
`=-(x^{2}-x+1)`
\(=-(x^{2}-x+\dfrac{1}{4}+\dfrac{3}{4})`
\(=-(x-\dfrac{1}{2})^2 -\dfrac{3}{4}\)
Vì \(-(x-\dfrac{1}{2})^2 <= 0\) với mọi `x`
\(=>-(x-\dfrac{1}{2})^2-\dfrac{3}{4} <= -\dfrac{3}{4}\) với mọi `x`
Hay \(x-x^2 -1 <= -\dfrac{3}{4}\)
Dấu "=" xảy ra `<=>x=1/2`
Đặt A = x - x² - 1
= -(x² - x + 1)
= -(x² - 2.x.1/2 + 1/4 + 1 - 1/4)
= -[(x - 1/2)² + 3/4]
= -(x - 1/2)² - 3/4
Do (x - 1/2)² ≥ 0 với mọi x ∈ R
⇒ -(x - 1/2)² ≤ 0 với mọi x ∈ R
⇒ -(x - 1/2)² - 3/4 ≤ -3/4 với mọi x ∈ R
Vậy GTLN của A là -3/4 khi x = 1/2
Để olm giúp em em nhé!
a, \(\dfrac{x+2}{7x+42}\) = \(\dfrac{x+2}{7.\left(x+6\right)}\) = \(\dfrac{\left(x+2\right)\left(x-6\right)}{7\left(x-6\right)\left(x+6\right)}\) (đk \(x\ne\) \(\mp\) 6)
\(\dfrac{-13x}{x^2-36}\) = \(\dfrac{-13x}{\left(x-6\right)\left(x+6\right)}\) = \(\dfrac{-7.13.x}{7.\left(x-6\right).\left(x+6\right)}\) = \(\dfrac{-91x}{7.\left(x-6\right)\left(x+6\right)}\)
b, \(\dfrac{7}{4x+16}\) = \(\dfrac{7\left(x-4\right)}{4.\left(x+4\right).\left(x-4\right)}\) (đk \(x\ne\) \(\pm\) 4)
\(\dfrac{15}{x^2-16}\) = \(\dfrac{15.4}{\left(x-4\right)\left(x+4\right).4}\) = \(\dfrac{60}{4.\left(x-4\right).\left(x+4\right)}\)
Lời giải:
a. $x^2-4x-5=0$
$\Leftrightarrow (x+1)(x-5)=0$
$\Leftrightarrow x+1=0$ hoặc $x-5=0$
$\Leftrightarrow x=-1$ hoặc $x=5$
b.
$5x^2-9x-2=0$
$\Leftrightarrow (x-2)(5x+1)=0$
$\Leftrightarrow x-2=0$ hoặc $5x+1=0$
$\Leftrightarrow x=2$ hoặc $x=\frac{-1}{5}$
c.
$(x^2+1)-5(x^2+1)+6=0$
$\Leftrightarrow a^2-5a+6=0$ (đặt $x^2+1=a$)
$\Leftrightarrow (a-2)(a-3)=0$
$\Leftrightarrow a-2=0$ hoặc $a-3=0$
$\Leftrightarrow x^2-1=0$ hoặc $x^2-2=0$
$\Leftrightarrow (x-1)(x+1)=0$ hoặc $(x-\sqrt{2})(x+\sqrt{2})=0$
$\Leftrightarrow x\in\left\{\pm 1; \pm \sqrt{2}\right\}$
d.
$(x^2+6x)-2(x+3)^2-17=0$
$\Leftrightarrow (x^2+6x+9)-2(x+3)^2-26=0$
$\Leftrightarrow (x+3)^2-2(x+3)^2-26=0$
$\Leftrightarrow -(x+3)^2-26=0$
$\Leftrightarrow (x+3)^2=-26<0$ (vô lý)
Do đó không tồn tại $x$ thỏa mãn.
Phần a thì mình có thể làm được nhưng phần b thì hơi sai sai á bạn.
Bạn xem lại đề nha.
7x^2 nha
Đa thức A và B dấu không rõ ràng. Bạn viết lại để mọi người hỗ trợ bạn tốt hơn.