Giải và biện luân phương trình:
\(\frac{ax-1}{x-1}+\frac{b}{x+1}=\frac{a\left(x^2+1\right)}{x^2-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{x}\left(\frac{x^2-xy}{x+y}\right)^2\left[\frac{x+y}{\left(x-y\right)^2}+\frac{x+y}{xy-y^2}\right]-\frac{x}{x+y}\)
A = \(\frac{1}{x}\left(\frac{x^2-xy}{x+y}\right)^2\left[\frac{x+y}{\left(x-y\right)^2}+\frac{x+y}{y\left(x-y\right)}\right]-\frac{x}{x+y}\)
A = \(\frac{1}{x}\left[\frac{x\left(x-y\right)}{x+y}\right]^2\left[\frac{y\left(x+y\right)+\left(x-y\right)\left(x+y\right)}{y\left(x-y\right)^2}\right]-\frac{x}{x+y}\)
A = \(\frac{1}{x}\cdot\frac{x^2\left(x-y\right)^2}{\left(x+y\right)^2}\left[\frac{xy+y^2+x^2-y^2}{y\left(x-y\right)^2}\right]-\frac{x}{x+y}\)
A = \(\frac{x\left(x-y\right)^2}{\left(x+y\right)^2}\cdot\frac{x\left(x+y\right)}{y\left(x-y\right)^2}-\frac{x}{x+y}\)
A = \(\frac{x^2}{y\left(x+y\right)}-\frac{x}{x+y}\)
A = \(\frac{x^2-xy}{y\left(x+y\right)}\)
Bạn tham khảo tại link : https://olm.vn/hoi-dap/detail/205275532692.html
Bài giải
\(\left(x-3\right)2-\left(x-3\right)\left(x+3\right)=0\)
\(\left(x-3\right)\left(x+3-2\right)=0\)
\(\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{3\text{ ; }-1\right\}\)
\(\left(x-3\right).2-\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left(x-3\right)\left[2-\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(2-x-3\right)=0\Leftrightarrow\left(x-3\right)\left[\left(-1\right)-x\right]\). Xét 2 trường hợp
Xét 2 trường hợp. \(TH1:x-3=0\Leftrightarrow x=0+3=3\)
\(TH2:\left(-1\right)-x=0\Leftrightarrow x=\left(-1\right)-0=-1\). Vậy \(x\in\left\{-1;3\right\}\)
\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\)
<=> \(\frac{4}{\left(x-1\right)\left(x-2\right)}-\frac{3}{2x^2-6x+1}+1=0\)
<=> 4(2x2 - 6x + 1) - 3(x - 1)(x - 2) + (x - 1)(x - 2)(2x2 - 6x + 1) = 0
<=> 28x2 - 30x + 2x4 - 12x3 = 0
<=> 2x(14x - 15 + x2 - 6x2) = 0
<=> 2x(x2 - 3x + 5)(x - 3) = 0
vì x2 - 3x + 5 khác 0 nên:
<=> 2x = 0 hoặc x - 3 = 0
<=> x = 0 hoặc x = 3
\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\)
\(\Leftrightarrow\frac{2x^4-12x^3+28x^2-30x}{2x^4-12x^3+28x^2-15x+2}=0\)
\(\Leftrightarrow2x^4-12x^3+28x^2-30x=0\)
\(\Leftrightarrow2\left(x-3\right)\left(x^2-3x+5\right)=0\)
mà \(x^2-3x+5\) khác 0
\(\Rightarrow\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vì a<b => 3a < 3b => 3a +4 < 3b+4 < 3b+4+1 = 3b+5
nên 3a+4 < 3b+5
\(\left(2x-1\right)^2=2x\left(2x+3\right)\)
=>\(4x^2-4x+1=4x^2+6x\)
=>\(4x^2-4x+1-4x^2-6x=0\)
=>\(-10x+1=0=>x=\frac{1}{10}\)
Bài giải
\(\left(2x-1\right)^2=2x\left(2x+3\right)\)
\(\left(2x-1\right)^2=2x\left(2x-1+4\right)\)
\(\left(2x-1\right)^2=2x\left(2x-1\right)+8x\)
\(\left(2x-1\right)^2-2x\left(2x-1\right)=8x\)
\(\left(2x-1-2x\right)\left(2x-1\right)=8x\)
\(-2x+1=8x\)
\(8x+2x=1\)
\(10x=1\)
\(x=\frac{1}{10}\)
\(ĐK:x\ne\pm1\)
\(\Leftrightarrow\frac{ax^2-x+ax-1+bx-b}{x^2-1}=\frac{a\left(x^2+1\right)}{x^2-1}\)
\(\Leftrightarrow\frac{ax^2+x\left(a-1+b\right)-b-1}{x^2-1}=\frac{ax^2+a}{x^2-1}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\a+b-1=0\\-b-1=a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\a+b-1=0\\-b-1=a\end{cases}}\)
Giải ra :D