Cho ΔABC ở phía ngoài tam giác,vẽ các hình vuông ADBE và ACFG.Vẽ hình bình hành AEGK.CMR:
a/AK=BC
b/AK⊥BC
c/3 đường thẳng AK,BF,CD đồng qui
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: Bạn tự làm nha
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+1\)
\(=\frac{x^2-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{x^2+x+1}{x+\sqrt{x}+1}\)
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
\(=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{1\left(\sqrt{a}-1\right)-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-1-2}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(a-1\right)}{\sqrt{a}\left(\sqrt{a}-3\right)}\)
\(\left(5\sqrt{7}+7\sqrt{5}\right):\sqrt{35}=\left(\sqrt{5^2.7}+\sqrt{7^2.5}\right):\sqrt{35}\)
\(=\left(\sqrt{35.5}+\sqrt{35.7}\right):\sqrt{35}\)
\(=\sqrt{35}\left(\sqrt{5}+\sqrt{7}\right):\sqrt{35}\)
\(=\sqrt{5}+\sqrt{7}\)
Toán Học Team
ĐKXĐ: \(x\ge0;x\ne1;\)
\(P=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{1-2x+x^2}{2}\)
\(=\frac{x\sqrt{x}+2x+\sqrt{x}-2x-4\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^1}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{x\sqrt{x}-x-4\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{\sqrt{x}\left(x-\sqrt{x}-4\right)\left(x-1\right)}{2\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(x-\sqrt{x}-4\right)\left(\sqrt{x}-1\right)}{2}\)
Ta có: \(P=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\times\frac{\left(1-x\right)^2}{2}\)
\(P=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(1-x\right)^2}{2}\)
\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(1-x\right)^2}{2}\)
\(P=\frac{x\sqrt{x}-4\sqrt{x}-x}{-\left(1-x\right)\left(\sqrt{x}+1\right)}.\frac{\left(1-x\right)^2}{2}\)
\(P=\frac{\sqrt{x}\left(x-4-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{2}\)
b, \(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\); \(\frac{b+c}{b+c+a}>\frac{b+c}{a+b+c+d}\)
\(\frac{c+d}{c+d+a}>\frac{c+d}{a+b+c+d};\frac{d+a}{a+d+b}>\frac{a+d}{a+b+c+d}\)
Cộng các bĐT trên
=> \(B>\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
Ta có Với \(0< \frac{x}{y}< 1\)
=> \(\frac{x}{y}< \frac{x+z}{y+z}\)
Áp dụng ta có
\(B>\frac{a+b+d}{a+b+c+d}+...+\frac{d+a+c}{a+b+c+d}=3\)
Vậy 2<B<3