Chứng minh rằng với mọi x, y khác 0 thì : \(\frac{x^3}{y}\ge-y^2+xy+x^2\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
mình đánh nhầm nha mn
=\(\frac{19}{49}\)chứ ko phải là 4949 đâu nhá
thông cảm nhé mn
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (x + y + z)3 - x3 - y3 - z3
= (x + y + z)3 - z3 - (x3 + y3)
= (x + y + z - z)[(x + y + z)2 + (x + y + z).z + z2) - (x + y)(x2 - xy + y2)
= (x + y)(x2 + y2 + z2 + 2xy + 2yz + 2zx + 2xz + 2yz + z2 + z2) - (x + y)(x2 - xy + y2)
= (x + y)(x2 + y2 + 3z2 + 2xy + 4yz + 4zx) - (x + y)(x2 - xy + y2)
= (x + y)(3z2 + 3xy + 5yz + 4zx)
b) Sửa đề x4 + 2010x2 + 2009x + 2010
= (x4 + x2 + 1) + (2009x2 + 2009x + 2009)
= (x4 + 2x2 + 1 - x2) + 2009(x2 + x + 1)
= [(x2 + 1)2 - x2] + 2009(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 1) + 2009(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 2010)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{x+2}{2x-4}-\frac{x-2}{2x+4}+\frac{8}{x^2-4}\right):\frac{4}{x-2}\)
\(=\left(\frac{x+2}{2\left(x-2\right)}-\frac{x-2}{2\left(x+2\right)}+\frac{8}{\left(x-2\right)\left(x+2\right)}\right):\frac{4}{x-2}\)
\(=\left(\frac{\left(x+2\right)^2}{2\left(x-2\right)\left(x+2\right)}-\frac{\left(x-2\right)^2}{2\left(x-2\right)\left(x+2\right)}+\frac{8x}{x\left(x-2\right)\left(x+2\right)}\right):\frac{4}{x-2}\)
\(=\left(\frac{x^2+4x+4-x^2+4x-4+8x}{2\left(x-2\right)\left(x+2\right)}\right):\frac{4}{x-2}\)
\(=\frac{16x}{2\left(x-2\right)\left(x+2\right)}.\frac{x-2}{4}=\frac{16x}{8\left(x+2\right)}=\frac{2x}{x+2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(1+\frac{1}{x}\right)\left(1+\frac{1}{x+1}\right)\left(1+\frac{1}{x+2}\right)...\left(1+\frac{1}{x+99}\right)\)
\(=\frac{x+1}{x}.\frac{x+2}{x+1}.\frac{x+3}{x+2}...\frac{x+100}{x+99}=\frac{\left(x+1\right)\left(x+2\right)\left(x+3\right)...\left(x+100\right)}{x\left(x+1\right)\left(x+2\right)...\left(x+99\right)}=\frac{x+100}{x}\)
\(bdt< =>x\left(x+y\right)\le\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{y}< =>x^2-xy+y^2\ge xy\)
\(< =>\left(x-y\right)^2\ge0\)(dpcm)